2 resultados para Kelvin-Voigt damping
em RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal
Resumo:
Transversal vibrations induced by a load moving uniformly along an infinite beam resting on a piece-wise homogeneous visco-elastic foundation are studied. Special attention is paid to the additional vibrations, conventionally referred to as transition radiations, which arise as the point load traverses the place of foundation discontinuity. The governing equations of the problem are solved by the normalmode analysis. The solution is expressed in a form of infinite sum of orthogonal natural modes multiplied by the generalized coordinate of displacement. The natural frequencies are obtained numerically exploiting the concept of the global dynamic stiffness matrix. This ensures that the frequencies obtained are exact. The methodology has restrictions neither on velocity nor on damping. The approach looks simple, though, the numerical expression of the results is not straightforward. A general procedure for numerical implementation is presented and verified. To illustrate the utility of the methodology parametric optimization is presented and influence of the load mass is studied. The results obtained have direct application in analysis of railway track vibrations induced by high-speed trains when passing regions with significantly different foundation stiffness.
Resumo:
The aim of this contribution is to extend the techniques of composite materials design to non-linear material behaviour and apply it for design of new materials for passive vibration control. As a first step a computational tool allowing determination of macroscopic optimized one-dimensional isolator behaviour was developed. Voigt, Maxwell, standard and more complex material models can be implemented. Objective function considers minimization of the initial reaction and/or displacement peak as well as minimization of the steady-state amplitude of reaction and/or displacement. The complex stiffness approach is used to formulate the governing equations in an efficient way. Material stiffness parameters are assumed as non-linear functions of the displacement. The numerical solution is performed in the complex space. The steady-state solution in the complex space is obtained by an iterative process based on the shooting method which imposes the conditions of periodicity with respect to the known value of the period. Extension of the shooting method to the complex space is presented and verified. Non-linear behaviour of material parameters is then optimized by generic probabilistic meta-algorithm, simulated annealing. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Procedure is programmed in MATLAB environment.