2 resultados para Gravimetric tar

em RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a volumetric unit previously assembled by the research group was upgraded. This unit revamping was necessary due to the malfunction of the solenoid valves employed in the original experimental setup, which were not sealing the gas properly leading to erroneous adsorption equilibrium measurements. Therefore, the solenoid valves were substituted by manual ball valves. After the volumetric unit improvement its operation was validated. For this purpose, the adsorption equilibrium of carbon dioxide (CO2) at 323K and 0 - 20 bar was measured on two different activated carbon samples, in the of extrudates (ANG6) and of a honeycomb monolith (ACHM). The adsorption equilibrium results were compared with data previously measured by the research group, using a high-pressure microbalance from Rubotherm GmbH (Germany) – gravimetric. The results obtained using both apparatuses are coincident thus validating the good operation of the volumetric unit upgraded in this work. Furthermore, the adsorption equilibrium of CO2 at 303K and 0 - 10 bar on Metal-Organic Frameworks (MOFs) Cu-BTC and Fe-BTC was also studied. The CO2 adsorption equilibrium results for both MOFs were compared with the literature results showing good agreement, which confirms the good quality of the experimental results obtained in the new volumetric unit. Cu-BTC sample showed significantly higher CO2 adsorption capacity when compared with the Fe-BTC sample. The revamping of the volumetric unit included a new valve configuration in order to allow testing an alternative method for the measurement of adsorption equilibrium. This new method was employed to measure the adsorption equilibrium of CO2 on ANG6 and ACHM at 303, 323 and 353K within 0-10 bar. The good quality of the obtained experimental data was testified by comparison with data previously obtained by the research group in a gravimetric apparatus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphatase and tensin homologue (PTEN) protein belongs to the family of protein tyrosine phos-phatase. Mutations on the phosphatase and tensin homologue (PTEN) protein are highly observed in diverse types of human tumors, being mostly identified on the phosphatase domain of the protein. Although PTEN is a modular protein composed by a phosphatase domain and a C2 domain for mem-brane anchoring, this work aimed at developing a minimal version of PTEN´s phosphatase domain. The minimal version (Small Domain) comprises a 28 residue peptide, with the PTEN 8-mer catalytic peptide accommodated between a α-helix and β-turn as observed in PTEN native structure. Firstly, a de novo prediction of the Small Domain´s secondary structure was carried out by molecular modeling tools. The stability of the predicted structures were then evaluated by Molecular Dynamics. Automated molecular docking of PTEN natural substrate PIP3, its analogue (Inositol) and a PTEN inhibitor (L-tar-tare) were performed with the modeled structure, and PTEN used as a positive control. The gene en-coding for Small Domain was designed and cloned into an expression vector at N-terminal of Green Fluorescence Protein (GFP) encoding gene. The fusion protein was then expressed in Escherichia coli cells. Different expression conditions have been explored for the production of the fusion protein to minimize the formation of inclusion bodies.