2 resultados para Google Cloud, App Engine, BaaS, Android

em RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughout the last years technologic improvements have enabled internet users to analyze and retrieve data regarding Internet searches. In several fields of study this data has been used. Some authors have been using search engine query data to forecast economic variables, to detect influenza areas or to demonstrate that it is possible to capture some patterns in stock markets indexes. In this paper one investment strategy is presented using Google Trends’ weekly query data from major global stock market indexes’ constituents. The results suggest that it is indeed possible to achieve higher Info Sharpe ratios, especially for the major European stock market indexes in comparison to those provided by a buy-and-hold strategy for the period considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The forest has a crucial ecological role and the continuous forest loss can cause colossal effects on the environment. As Armenia is one of the low forest covered countries in the world, this problem is more critical. Continuous forest disturbances mainly caused by illegal logging started from the early 1990s had a huge damage on the forest ecosystem by decreasing the forest productivity and making more areas vulnerable to erosion. Another aspect of the Armenian forest is the lack of continuous monitoring and absence of accurate estimation of the level of cuts in some years. In order to have insight about the forest and the disturbances in the long period of time we used Landsat TM/ETM + images. Google Earth Engine JavaScript API was used, which is an online tool enabling the access and analysis of a great amount of satellite imagery. To overcome the data availability problem caused by the gap in the Landsat series in 1988- 1998, extensive cloud cover in the study area and the missing scan lines, we used pixel based compositing for the temporal window of leaf on vegetation (June-late September). Subsequently, pixel based linear regression analyses were performed. Vegetation indices derived from the 10 biannual composites for the years 1984-2014 were used for trend analysis. In order to derive the disturbances only in forests, forest cover layer was aggregated and the original composites were masked. It has been found, that around 23% of forests were disturbed during the study period.