2 resultados para Building material industry

em RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The considerable amount of energy consumed on Earth is a major cause for not achieving sustainable development. Buildings are responsible for the highest worldwide energy consumption, nearly 40%. Strong efforts have been made in what concerns the reduction of buildings operational energy (heating, hot water, ventilation, electricity), since operational energy is so far the highest energy component in a building life cycle. However, as operational energy is being reduced the embodied energy increases. One of the building elements responsible for higher embodied energy consumption is the building structural system. Therefore, the present work is going to study part of embodied energy (initial embodied energy) in building structures using a life cycle assessment methodology, in order to contribute for a greater understanding of embodied energy in buildings structural systems. Initial embodied energy is estimated for a building structure by varying the span and the structural material type. The results are analysed and compared for different stages, and some conclusions are drawn. At the end of this work it was possible to conclude that the building span does not have considerable influence in embodied energy consumption of building structures. However, the structural material type has influence in the overall energetic performance. In fact, with this research it was possible that building structure that requires more initial embodied energy is the steel structure; then the glued laminated timber structure; and finally the concrete structure.