92 resultados para alternative assessment
Resumo:
The Electrohysterogram (EHG) is a new instrument for pregnancy monitoring. It measures the uterine muscle electrical signal, which is closely related with uterine contractions. The EHG is described as a viable alternative and a more precise instrument than the currently most widely used method for the description of uterine contractions: the external tocogram. The EHG has also been indicated as a promising tool in the assessment of preterm delivery risk. This work intends to contribute towards the EHG characterization through the inventory of its components which are: • Contractions; • Labor contractions; • Alvarez waves; • Fetal movements; • Long Duration Low Frequency Waves; The instruments used for cataloging were: Spectral Analysis, parametric and non-parametric, energy estimators, time-frequency methods and the tocogram annotated by expert physicians. The EHG and respective tocograms were obtained from the Icelandic 16-electrode Electrohysterogram Database. 288 components were classified. There is not a component database of this type available for consultation. The spectral analysis module and power estimation was added to Uterine Explorer, an EHG analysis software developed in FCT-UNL. The importance of this component database is related to the need to improve the understanding of the EHG which is a relatively complex signal, as well as contributing towards the detection of preterm birth. Preterm birth accounts for 10% of all births and is one of the most relevant obstetric conditions. Despite the technological and scientific advances in perinatal medicine, in developed countries, prematurity is the major cause of neonatal death. Although various risk factors such as previous preterm births, infection, uterine malformations, multiple gestation and short uterine cervix in second trimester, have been associated with this condition, its etiology remains unknown [1][2][3].
Resumo:
Combinatorial Optimization Problems occur in a wide variety of contexts and generally are NP-hard problems. At a corporate level solving this problems is of great importance since they contribute to the optimization of operational costs. In this thesis we propose to solve the Public Transport Bus Assignment problem considering an heterogeneous fleet and line exchanges, a variant of the Multi-Depot Vehicle Scheduling Problem in which additional constraints are enforced to model a real life scenario. The number of constraints involved and the large number of variables makes impracticable solving to optimality using complete search techniques. Therefore, we explore metaheuristics, that sacrifice optimality to produce solutions in feasible time. More concretely, we focus on the development of algorithms based on a sophisticated metaheuristic, Ant-Colony Optimization (ACO), which is based on a stochastic learning mechanism. For complex problems with a considerable number of constraints, sophisticated metaheuristics may fail to produce quality solutions in a reasonable amount of time. Thus, we developed parallel shared-memory (SM) synchronous ACO algorithms, however, synchronism originates the straggler problem. Therefore, we proposed three SM asynchronous algorithms that break the original algorithm semantics and differ on the degree of concurrency allowed while manipulating the learned information. Our results show that our sequential ACO algorithms produced better solutions than a Restarts metaheuristic, the ACO algorithms were able to learn and better solutions were achieved by increasing the amount of cooperation (number of search agents). Regarding parallel algorithms, our asynchronous ACO algorithms outperformed synchronous ones in terms of speedup and solution quality, achieving speedups of 17.6x. The cooperation scheme imposed by asynchronism also achieved a better learning rate than the original one.