101 resultados para Metabolic process
Resumo:
This research computes an Equilibrium Labor Share using a VECM for a panel of 19 countries, analyzes what determines the speed at which the labor share adjusts towards that equilibrium and decomposes this adjustment in terms of real wages and employment. Results suggest that the speed at which a country adjusts decreases with employment protection legislation and labor taxes. Most countries’ labor shares adjustment is made through real wages changes instead of changing employment, suggesting that wage moderation policies may play an important role on the adjustment process without harming employment.
Resumo:
Based on the report for the unit “Métodos Interactivos de Participação e Decisão A” (Interactive methods of participation and decision A), coordinated by Prof. Lia Maldonado Teles de Vasconcelos and Prof. Nuno Miguel Ribeiro Videira Costa. This unit was provided for the PhD Program in Technology Assessment in 2015/2016.
Resumo:
The present PhD thesis develops the cell functional enviromics (CFE) method to investigate the relationship between environment and cellular physiology. CFE may be defined as the envirome-wide cellular function reconstruction through the collection and systems-level analysis of dynamic envirome data. Throughout the thesis, CFE is illustrated by two main applications to cultures of a constitutive P. pastoris X33 strain expressing a scFv antibody fragment. The first application addresses the challenge of culture media development. A dataset was built from 26 shake flask experiments, with variations in trace elements concentrations and basal medium dilution based on the standard BSM+PTM1. Protein yield showed high sensitivity to culture medium variations, while biomass was essentially determined by BSM dilution. High scFv yield was associated with high overall metabolic fluxes through central carbon pathways concomitantly with a relative shift of carbon flux from biosynthetic towards energy-generating pathways. CFE identified three cellular functions (growth, energy generation and by-product formation) that together described 98.8% of the variance in observed fluxes. Analyses of how medium factors relate to identified cellular functions showed iron and manganese at concentrations close to PTM1 inhibit overall metabolic activity. The second application addresses bioreactor operation. Pilot 50 L fed-batch cultivations, followed by 1H-NMR exometabolite profiling, allowed the acquisition of data for 21 environmental factors over time. CFE identified five major metabolic pathway groups that are frequently activated by the environment. The resulting functional enviromics map may serve as template for future optimization of media composition and feeding strategies for Pichia pastoris. The present PhD thesis is a step forward towards establishing the foundations of CFE that is still at its infancy. The methods developed herein are a contribution for changing the culture media and process development paradigm towards a holistic and systematic discipline in the future.
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
Nowadays, a significant number of banks in Portugal are facing a bank-branch restructuring problem, and Millennium BCP is not an exception. The closure of branches is a major component of profit maximization through the reduction in operational and personnel costs but also an opportunity to approach the idea of “baking of future” and start thinking on the benefits of the digital era. This dissertation centers on a current high-impact organizational problem addressed by the company and consists in a proposal of optimization to the model that Millennium BCP uses. Even though measures of performance are usually considered the most important elements in evaluating the viability of branches, there is evidence suggesting that other general factors can be important to assess branch potential, such as the influx on branches, business dimensions of a branch and its location, which will be addressed in this project.
Resumo:
The present Work Project (WP) is the result of Sonae’s concern with fraud risk, seeking to implement a method that formally describes and evaluates it in its various forms. In a context of limited human, capital, time and tools’ resources, the Internal Audit (IA) department of the company developed a framework to raise the awareness of top management and identify which processes of its value chain present a higher level of exposure to fraud, with the purpose of redirecting attention to those and prioritizing the creation of new mechanisms to monitor its KPIs’ dynamics.
Resumo:
The year is 2015 and the startup and tech business ecosphere has never seen more activity. In New York City alone, the tech startup industry is on track to amass $8 billion dollars in total funding – the highest in 7 years (CB Insights, 2015). According to the Kauffman Index of Entrepreneurship (2015), this figure represents just 20% of the total funding in the United States. Thanks to platforms that link entrepreneurs with investors, there are simply more funding opportunities than ever, and funding can be initiated in a variety of ways (angel investors, venture capital firms, crowdfunding). And yet, in spite of all this, according to Forbes Magazine (2015), nine of ten startups will fail. Because of the unpredictable nature of the modern tech industry, it is difficult to pinpoint exactly why 90% of startups fail – but the general consensus amongst top tech executives is that “startups make products that no one wants” (Fortune, 2014). In 2011, author Eric Ries wrote a book called The Lean Startup in attempts to solve this all-too-familiar problem. It was in this book where he developed the framework for The Hypothesis-Driven Entrepreneurship Process, an iterative process that aims at proving a market before actually launching a product. Ries discusses concepts such as the Minimum Variable Product, the smallest set of activities necessary to disprove a hypothesis (or business model characteristic). Ries encourages acting briefly and often: if you are to fail, then fail fast. In today’s fast-moving economy, an entrepreneur cannot afford to waste his own time, nor his customer’s time. The purpose of this thesis is to conduct an in-depth of analysis of Hypothesis-Driven Entrepreneurship Process, in order to test market viability of a reallife startup idea, ShowMeAround. This analysis will follow the scientific Lean Startup approach; for the purpose of developing a functional business model and business plan. The objective is to conclude with an investment-ready startup idea, backed by rigorous entrepreneurial study.
Resumo:
Sonae MC is constantly innovating and keeping up with the new market trends, being increasingly focused on E-commerce due to its growing importance. In that area, a telephone line is available to support customers with their problems. However, rare were the cases in which those problems were solved in the first contact. Therefore, the goal of this work was to reengineer these processes to improve the service performance and consequently the customer’s satisfaction. Following an evolutionary approach, improvement opportunities were suggested and if correctly implemented the cases resolution time could decrease 1 day and Sonae MC will save €7.750 per month.
Resumo:
This study is specifically concerned with the effect of the Enterprise Resource Planning (ERP) on the Business Process Redesign (BPR). Researcher’s experience and the investigation on previous researches imply that BPR and ERP are deeply related to each other and a study to found the mentioned relation further is necessary. In order to elaborate the hypothesis, a case study, in particular Turkish electricity distribution market and the phase of privatization are investigated. Eight companies that have taken part in privatization process and executed BPR serve as cases in this study. During the research, the cases are evaluated through critical success factors on both BPR and ERP. It was seen that combining the ERP Solution features with business processes lead the companies to be successful in ERP and BPR implementation. When the companies’ success and efficiency were compared before and after the ERP implementation, a considerable change was observed in organizational structure. It was spotted that the team composition is important in the success of ERP projects. Additionally, when the ERP is in driver or enabler role, the companies can be considered successful. On the contrary, when the ERP has a neutral role of business processes, the project fails. In conclusion, it can be said that the companies, which have implemented the ERP successfully, have accomplished the goals of the BPR.
Resumo:
Pharmaceuticals and personal care products (PPCPs) are widely used on a daily basis. After their usage they reach the wastewater treatment plants (WWTPs). These compounds have different physico-chemical characteristics, which makes them difficult to completely remove in the WWTPs, througth conventional treatments. Currently, there is no legislation regarding PPCPs thresholds in effluent discharge. But, even at vestigial concentrations, these compounds enclose environmental risks due to, e.g., endocrine disruption potential. There is a need of alternative techniques for their removal in WWTPs. The main goal of this work was to assess the use of electrodialytic (ED) process to remove PPCPs from the effluent to be discharged. A two-compartment ED cell was used testing (i) the effluent position in the cell (anode and cathode compartment); (ii) the use of anion (AEM) and cation exchange membrane (CEM); (iii) the treatment period (6, 12 and 24 hours); (iv) effluent recirculation and current steps; (v) the feasibility of sequential treatments. Phosphorus (P) removal from effluent and energetic costs associated to the process were also evaluated. Five PPCPs were studied – caffeine (CAF), bisphenol A (BPA), 17 β-estradiol (E2), ethinyl estradiol (EE2) and oxybenzone (MBPh). The ED process showed to be effective in the removal when effluent is in the anode compartment. Oxidation is suggested to be the main removal process, which was between 88 and 96%, for all the compounds, in 6 hours. Nevertheless, the presence of intermediates and/or by-products was also observed in some cases. Effluent recirculation should have a retention time in the ED cell big enough to promote removal whereas the current steps (effluent in anode compartment) slightly increased removal efficiencies (higher than 80% for all PPCPs). The sequential set of ED treatment (effluent in anode compartment) showed to be effective during both periods with a removal percentage between 80 and 95% and 73 to 88% in the case of AEM and CEM, respectively. Again, the main removal process is strongly suggested to be oxidation in the anode compartment. However, there was an increase of BOD5 and COD, which might be explained by effluent spiking, these parameters limiting the effluent discharge. From these treatments, the use of AEM, enhanced the P removal from effluent to minimize risk of eutrophication. Energetic costs of the best set-up (6 hours) are approximately 0,8€/m3 of wastewater, a value considered low, attending to the prices of other treatment processes.