100 resultados para LIME APPLICATION
Resumo:
Madine Darby Canine Kidney (MDCK) cell lines have been extensively evaluated for their potential as host cells for influenza vaccine production. Recent studies allowed the cultivation of these cells in a fully defined medium and in suspension. However, reaching high cell densities in animal cell cultures still remains a challenge. To address this shortcoming, a combined methodology allied with knowledge from systems biology was reported to study the impact of the cell environment on the flux distribution. An optimization of the medium composition was proposed for both a batch and a continuous system in order to reach higher cell densities. To obtain insight into the metabolic activity of these cells, a detailed metabolic model previously developed by Wahl A. et. al was used. The experimental data of four cultivations of MDCK suspension cells, grown under different conditions and used in this work came from the Max Planck Institute, Magdeburg, Germany. Classical metabolic flux analysis (MFA) was used to estimate the intracellular flux distribution of each cultivation and then combined with partial least squares (PLS) method to establish a link between the estimated metabolic state and the cell environment. The validation of the MFA model was made and its consistency checked. The resulted PLS model explained almost 70% of the variance present in the flux distribution. The medium optimization for the continuous system and for the batch system resulted in higher biomass growth rates than the ones obtained experimentally, 0.034 h-1 and 0.030 h-1, respectively, thus reducing in almost 10 hours the duplication time. Additionally, the optimal medium obtained for the continuous system almost did not consider pyruvate. Overall the proposed methodology seems to be effective and both proposed medium optimizations seem to be promising to reach high cell densities.
Resumo:
This work documents the deposition and optimization of semiconductor thin films using chemical spray coating technique (CSC) for application on thin-film transistors (TFTs), with a low-cost, simple method. CSC setup was implemented and explored for industrial application, within Holst Centre, an R&D center in the Netherlands. As zinc oxide had already been studied within the organization, it was used as a standard material in the initial experiments, obtaining typical mobility values of 0.14 cm2/(V.s) for unpatterned TFTs. Then, oxide X layer characteristics were compared for films deposited with CSC at 40°C and spin-coating. The mobility of the spin-coated TFTs was 103 cm2/(V.s) higher, presumably due to the lack of uniformity of spray-coated film at such low temperatures. Lastly, tin sulfide, a relatively unexplored material, was deposited by CSC in order to obtain functional TFTs and explore the device’s potential for working as a phototransistor. Despite the low mobilities of the devices, a sensitive photodetector was made, showing drain current variation of nearly one order of magnitude under yellow light. CSC technique’s simplicity and versatility was confirmed, as three different semiconductors were successfully implemented into functional devices.
Resumo:
The main purpose of the research is to present a proposal for a methodology to support the rehabilitation project of renders of old buildings. To achieve the objective it was considered essential to define the main types of participants and aspects to integrate the proposal. The research methodology consists in an inquiry presented to several professional participants in rehabilitation, a market study of materials and products available in Portugal, the design of a methodology proposal and its application to a case study. The inquiry sample totals 24 answers from the targeted professionals. A sequence of relevant supporting procedures consists in the proposal, which aims to provide a supporting methodology to decide and project in this context and also to be tested with its application to the building. This proposal was applied to an old building with load-bearing stone masonry walls and air-lime based renders. It was concluded that the assessment of the building and external renderings’ condition, its diagnosis and of the supporting walls, the definition of intervention, the specification of materials to be used and performance requirements to comply, and also plans for conservation and periodic maintenance, are crucial. From the inquiry, compatibility between materials and complementary roles and points of view of different types of participants in rehabilitation must be highlighted. A proposal for a methodology to support the project could provide useful guidance particularly for architects and construction engineers, and improve the understanding of direct participants on site, therefore contributing for the correct implementation of the intervention.
Resumo:
All over the world, many earth buildings are deteriorating due to lack of maintenance and repair. Repairs on rammed earth walls are mainly done with mortars, by rendering application; however, often the repair is inadequate, resorting to the use of incompatible materials, including cement-based mortars. It has been observed that such interventions, in walls that until that day only had presented natural ageing issues, created new problems, much more dangerous for the building than the previous ones, causing serious deficiencies in this type of construction. One of the problems is that the detachment of the new cement-based mortar rendering only occurs after some time but, until that occurrence, degradations develop in the wall itself. When the render detaches, instead of needing only a new render, the surface has to be repaired in depth, with a repair mortar. Consequently, it has been stablished that the renders, and particularly repair mortars, should have physical, mechanical and chemical properties similar to those of the rammed earth walls. This article intends to contribute to a better knowledge of earth-based mortars used to repair the surface of rammed earth walls. The studied mortars are based on four types of earth: three of them were collected from non-deteriorated parts of walls of unstabilized rammed earth buildings located in Alentejo region, south of Portugal; the fourth is a commercial earth, consisting mainly of clay. Other components were also used, particularly: sand to control shrinkage; binders stabilizers such as dry hydrated air-lime, natural hydraulic lime, Portland cement and natural cement; as well as natural vegetal fibers (hemp fibers). The experimental analysis of the mortars in the fresh state consisted in determining the consistency by flow table and the bulk density. In the hardened state, the tests made it possible to evaluate the following properties: linear and volumetric shrinkage; capillary water absorption; drying capacity; dynamic modulus of elasticity; flexural and compressive strength.
Resumo:
The restoration materials currently used to fill gaps in architectural historical azulejos (e.g. lime or organic resin pastes) usually show serious drawbacks in terms of compatibility, effectiveness and durability. The existing solutions do not fully protect azulejos in outdoor conditions and frequently result in further deterioration. Geopolymers can be a potential solution for azulejo lacunae infill given the chemical-mineralogical similitude to the ceramic body, and also the durability and versatile range of physical properties that can be obtained through the manipulation of their formulation and curing conditions. This work presents and discusses the viability of the use of geopolymeric pastes to fill lacunae in azulejos or to act as “cold” cast ceramic tile surrogates reproducing missing azulejo fragments. The formulation of geopolymers, namely the type of activators, the aluminosilicate source, the amount of water (to meet adequate workability requirements) and curing conditions were studied. The need for post-curing desalination was also considered envisaging their application in the restoration of outdoor architectural historical azulejos frequently exposed to adverse environmental conditions. The possible advantages and disadvantages of the use of geopolymers in the conservation of azulejos are also discussed. Several techniques were used to study the chemical and physical behavior of geopolymers, namely FT-IR, XRD, MIP, SEM-EDS, WDXRF, electrical conductivity, open porosity, bending strength, adhesion strength, water vapour permeability, thermal expansion and hydric expansion. The results indicate that geopolymers are a promising material for restoration of azulejos, exhibiting some properties, such as adhesion to the ceramic substrate, higher than inorganic materials used nowadays, such as aerial lime based pastes.
Resumo:
Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.
Development and validation of gold nanoprobes for human SNP detection towards commercial application
Resumo:
Conventional molecular techniques for detection and characterization of relevant nucleic acid (i.e. DNA) sequences are, nowadays, cumbersome, expensive and with reduced portability. The main objective of this dissertation consisted in the optimization and validation of a fast and low-cost colorimetric nanodiagnostic methodology for the detection of single nucleotide polymorphisms (SNPs). This was done considering SNPs associated to obesity of commercial interest for STAB VIDA, and subsequent evaluation of other clinically relevant targets. Also, integration of this methodology into a microfluidic platform envisaging portability and application on points-of-care (POC) was achieved. To warrant success in pursuing these objectives, the experimental work was divided in four sections: i) genetic association of SNPs to obesity in the Portuguese population; ii) optimization and validation of the non-cross-linking approach for complete genotype characterization of these SNPs; iii) incorporation into a microfluidic platform; and iv) translation to other relevant commercial targets. FTO dbSNP rs#:9939609 carriers had higher body mass index (BMI), total body fat mass, waist perimeter and 2.5 times higher risk to obesity. AuNPs functionalized with thiolated oligonucleotides (Au-nanoprobes) were used via the non-cross-linking to validate a diagnostics approach against the gold standard technique - Sanger Sequencing - with high levels of sensitivity (87.50%) and specificity (91.67%). A proof-of-concept POC microfluidic device was assembled towards incorporation of the molecular detection strategy. In conclusion a successful framework was developed and validated for the detection of SNPs with commercial interest for STAB VIDA, towards future translation into a POC device.
Resumo:
In the past few years, prompted by the globalization and the quality and ease of travel, the world has witnessed a boom in the tourism sector. The forecast is that this tendency will continue in the upcoming years, representing a set of opportunities for companies operating in this business area. Boost Tourism operates in the tourism entertainment industry. Its revenues growth has been exponential so the founders decided that it was time to take it to new heights. This Work Project aims to study three alternative growth strategies and, based on a comprehensive analysis of the industry and the market, provide recommendations to outline the optimal expansion path.
Resumo:
The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. In this study scrap tire rubber was used as additional aggregate of mortars based on natural hydraulic lime NHL 3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained directly from industry and separated fine, medium and coarse fractions; 0 %, 18 %, 36 % and 54 % of the weight of binder, corresponding to 2.5 %, 5 % and 7.5 % of the weight of sand. As mortars based on NHL specifications became stricter with the current version of EN 459–1:2015, the influence of the rubber’s additions on the mortars’ fresh state, mechanical and physical performance is presented in this work: flow table consistency, water retention, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity are studied. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.