94 resultados para Geospatial Data Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes a systematic model that is able to fit the Global Macro Investing universe. The Analog Model tests the possibility of capturing the likelihood of an optimal investment allocation based on similarity across different periods in history. Instead of observing Macroeconomic data, the model uses financial markets’ variables to classify unknown short-term regimes. This methodology is particularly relevant considering that asset classes and investment strategies react differently to specific macro environment shifts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Master’s Double Degree in Finance from Maastricht University and NOVA – School of Business and Economics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The following project introduces a model of Growth Hacking strategies for business-tobusiness Software-as-a-Service startups that was developed in collaboration with and applied to a Portuguese startup called Liquid. The work addresses digital marketing channels such as content marketing, email marketing, social marketing and selling. Further, the company’s product, pricing strategy, partnerships and website communication are examined. Applying best case practices, competitor benchmarks and interview insights from numerous industry influencers and experts, areas for improvement are deduced and procedures for each of those channels recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.