94 resultados para árvore de Lucas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta dissertação apresenta uma metodologia original para simular a morfologia e as propriedades petrofísicas de reservatórios de hidrocarbonetos em sistemas de canais turbidíticos. Estes sistemas são constituídos por complexos, ou seja, conjuntos de canais de arquitetura meandriforme, e são considerados importantes alvos para a indústria petrolífera. A simulação da morfologia divide-se em duas partes, primeiramente é simulada a trajetória do complexo e depois são simuladas as trajetórias dos canais propriamente ditos condicionadas à trajetória do complexo. O algoritmo de simulação utiliza as classes de ângulos azimutais de linhas poligonais de treino como uma variável aleatória. As trajetórias são simuladas também como linhas poligonais, condicionais a estatísticas multiponto das trajetórias de treino e a pontos de controlo. As estatísticas multiponto são organizadas em árvore, que guarda sequências de classes de orientação que ocorrem na trajetória de treino e as respetivas probabilidades de ocorrência. Para avaliar as propriedades petrofísicas, o modelo morfológico das trajetórias é convertido para uma malha de blocos de alta resolução, identificando-se, em cada bloco, a fácies preponderante de acordo com um modelo conceptual de zonamento da secção dos canais. A conversão prioriza os canais mais recentes (do topo) sobre os mais antigos (da base). A cada fácies é associada uma lei de distribuição da porosidade e permeabilidade, assim são geradas imagens destas propriedades petrofísicas por Simulação Sequencial Direta com histogramas locais. Finalmente, o número de blocos da malha é reduzido por upscaling e as simulações são ordenadas para poderem ser utilizadas nos simuladores de fluxo. Para ilustrar a metodologia, utilizaram-se imagens de sísmica 3D de um reservatório turbidítico na Bacia do Baixo Congo para extrair leis de distribuição das dimensões dos canais e trajetórias de treino. Os resultados representam corretamente a arquitetura complexa destes sistemas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A representatividade do número de reinternamento hospitalares, no quadro dos custos hospitalares, deverá ser encarada como um indicador de qualidade nos serviços prestados e um objeto de estudo no que diz respeito à forma como estão a ser geridos esses serviços. Caracterizar os utentes com maior propensão a um reinternamento e identificar os fatores de risco que lhe estão associados torna-se, pois, pertinente, pois só assim, se poderá, no futuro, desenvolver uma atuação proativa com o objetivo primeiro de uma redução de custos sem colocar, no entanto, em causa a qualidade dos serviços que as entidades hospitalares prestam aos seus utentes. O objetivo deste estudo consiste em criar um modelo preditivo, com base em árvores de decisão, que auxilie a identificar os fatores de risco dos reinternamentos em 30 dias relativos ao Grupos de Diagnóstico Homogéneo (GDH) 127 - Insuficiência cardíaca e/ou choque, de forma a auxiliar as entidades prestadoras de cuidados de saúde a tomar decisões e atuar atempadamente sobre situações críticas. O estudo é suportado pela base de dados dos Grupos de Diagnóstico Homogéneos, a qual, possui informação sobre o utente e sobre o seu processo de internamento, nomeadamente, o diagnóstico principal, os diagnósticos secundários, os procedimentos realizados, a idade e sexo do utente e o destino após a alta. Pode concluir-se após estudo, que as taxas de reinternamentos têm vindo a aumentar nos últimos anos, que a população idosa insere-se no universo sujeito ao maior risco de reinternamento e que além do diagnóstico principal, a existência de comorbidades representa um papel importante no incremento do risco, nomeadamente, quando são diagnosticadas em simultâneo doenças renais, diabetes mellitus ou doenças isquémicas crónicas do coração (NCOP).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As florestas são uma fonte importante de recursos naturais, desempenhando um papel fulcral na sustentabilidade ambiental. A sua gestão quer territorial quer económica, conduz a uma maximização da produção, sem alteração da qualidade da matéria-prima. Portugal apresenta mais de um terço do seu território coberto por floresta, apresentando uma possibilidade de aplicação de sistemas de gestão, territorial e económica que maximizem a sua produção. Os Sistemas de Informação Geográfica (SIG) são modelos da realidade em que é possível integrar toda a informação disponível sobre um assunto tendo por base um campo comum a todos as variáveis, a localização geográfica. Os SIG podem contribuir de diversas formas para um maior desenvolvimento das rotinas e ferramentas de planeamento e gestão florestal. A sua integração com modelos quantitativos para planeamento e gestão de florestas é uma mais-valia nesta área. Nesta dissertação apresentam-se modelos geoestatísticos, com recurso a Sistemas de Informação Geográfica, de apoio e suporte à produção de pinha em Pinheiro-manso (Pinus pinea L.). Procurando estimar as áreas com melhor propensão à produção, a partir de dados amostrais. Estes foram previamente estudados tendo sido selecionadas quatro variáveis: largura da copa, área basal, altura da árvore e produção de pinha. A geoestatística aplicada, inclui modelos de correlação espacial: kriging, onde são atribuídos pesos às amostras a partir de uma análise espacial baseada no variograma experimental. Foi utilizada a extensão Geostatistical Analyst do ArcGis da ESRI, para realizar 96 krigings para as quatro variáveis em estudo, com diferentes parametrizações, destes foram selecionados 8 krigings. Com base nos critérios de adequação dos modelos e da análise de resultados da predição dos erros - cross validation. O resultado deste estudo é apresentado através de mapas de previsão para a produção de pinha em Pinheiro manso, em que foram analisadas áreas com maior e menor probabilidade de produção tendo-se realizado análises de comparação de variáveis. Através da interseção de todas as variáveis com a produção, podemos concluir que os concelhos com maiores áreas de probabilidade de produção de pinha em Pinheiro manso, da área de estudo, são Alcácer do Sal, Montemor-o-Novo, Vendas Novas, Coruche e Chamusca. Com a realização de um cruzamento de dados entre os resultados obtidos dos krigings, e a Carta de Uso e Ocupação do Solo de Portugal Continental para 2007 (COS2007), realizaram-se mapas de previsão para a expansão do Pinheiro manso. Nas áreas de expansão conseguimos atingir aumentos mínimos na ordem dos 11% e máximo na ordem dos 61%. No total consegue-se atingir aproximadamente 128 mil ha para área de expansão do Pinheiro manso. Superando, os valores esperados pelos Planos Regionais de Ordenamento Florestal, abrangidos pela área da amostra em estudo, em que é esperado um incremento de cerca de 130 mil hectares de área de Pinheiro manso para 2030.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interest in using information to improve the quality of living in large urban areas and its governance efficiency has been around for decades. Nevertheless, the improvements in Information and Communications Technology has sparked a new dynamic in academic research, usually under the umbrella term of Smart Cities. This concept of Smart City can probably be translated, in a simplified version, into cities that are lived, managed and developed in an information-saturated environment. While it makes perfect sense and we can easily foresee the benefits of such a concept, presently there are still several significant challenges that need to be tackled before we can materialize this vision. In this work we aim at providing a small contribution in this direction, which maximizes the relevancy of the available information resources. One of the most detailed and geographically relevant information resource available, for the study of cities, is the census, more specifically the data available at block level (Subsecção Estatística). In this work, we use Self-Organizing Maps (SOM) and the variant Geo-SOM to explore the block level data from the Portuguese census of Lisbon city, for the years of 2001 and 2011. We focus on gauging change, proposing ways that allow the comparison of the two time periods, which have two different underlying geographical bases. We proceed with the analysis of the data using different SOM variants, aiming at producing a two-fold portrait: one, of the evolution of Lisbon during the first decade of the XXI century, another, of how the census dataset and SOM’s can be used to produce an informational framework for the study of cities.