64 resultados para molecular typing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the effect of radiation on living tissues is a rather complex task to address mainly because they are made of a set of complex functional biological structures and interfaces. Particularly if one is looking for where damage is taking place in a first stage and what are the underlying reaction mechanisms. In this work a new approach is addressed to study the effect of radiation by making use of well identified molecular hetero-structures samples which mimic the biological environment. These were obtained by assembling onto a solid support deoxyribonucleic acid (DNA) and phospholipids together with a soft water-containing polyelectrolyte precursor in layered structures and by producing lipid layers at liquid/air interface with DNA as subphase. The effects of both ultraviolet (UV) radiation and carbon ions beams were systematically investigated in these heterostructures, namely damage on DNA by means vacuum ultraviolet (VUV), infrared (IR), X-Ray Photoelectron (XPS) and impedance spectroscopy. Experimental results revealed that UV affects furanose, PO2-, thymines, cytosines and adenines groups. The XPS spectrometry carried out on the samples allowed validate the VUV and IR results and to conclude that ionized phosphate groups, surrounded by the sodium counterions, congregate hydration water molecules which play a role of UV protection. The ac electrical conductivity measurements revealed that the DNA electrical conduction is arising from DNA chain electron hopping between base-pairs and phosphate groups, with the hopping distance equal to the distance between DNA base-pairs and is strongly dependent on UV radiation exposure, due loss of phosphate groups. Characterization of DNA samples exposed to a 4 keV C3+ ions beam revealed also carbon-oxygen bonds break, phosphate groups damage and formation of new species. Results from radiation induced damage carried out on biomimetic heterostructures having different compositions revealed that damage is dependent on sample composition, with respect to functional targeted groups and extent of damage. Conversely, LbL films of 1,2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) liposomes, alternated with poly(allylamine hydrochloride) (PAH) revealed to be unaffected, even by prolonged UV irradiation exposure, in the absence of water molecules. However, DPPG molecules were damaged by the UV radiation in presence of water with cleavage of C-O, C=O and –PO2- bonds. Finally, the study of DNA interaction with the ionic lipids at liquid/air interfaces revealed that electrical charge of the lipid influences the interaction of phospholipid with DNA. In the presence of DNA in the subphase, the effects from UV irrladiation were seen to be smaller, which means that ionic products from biomolecules degradation stabilize the intact DPPG molecules. This mechanism may explain why UV irradiation does not cause immediate cell collapse, thus providing time for the cellular machinery to repair elements damaged by UV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The obligate intracellular bacterium Chlamydia trachomatis is a human pathogen of major public health significance. Strains can be classified into 15 main serovars (A to L3) that preferentially cause ocular infections (A-C), genital infections (D-K) or lymphogranuloma venereum (LGV) (L1-L3), but the molecular basis behind their distinct tropism, ecological success and pathogenicity is not welldefined. Most chlamydial research demands culture in eukaryotic cell lines, but it is not known if stains become laboratory adapted. By essentially using genomics and transcriptomics, we aimed to investigate the evolutionary patterns underlying the adaptation of C. trachomatis to the different human tissues, given emphasis to the identification of molecular patterns of genes encoding hypothetical proteins, and to understand the adaptive process behind the C. trachomatis in vivo to in vitro transition. Our results highlight a positive selection-driven evolution of C. trachomatis towards nichespecific adaptation, essentially targeting host-interacting proteins, namely effectors and inclusion membrane proteins, where some of them also displayed niche-specific expression patterns. We also identified potential "ocular-specific" pseudogenes, and pointed out the major gene targets of adaptive mutations associated with LGV infections. We further observed that the in vivo-derived genetic makeup of C. trachomatis is not significantly compromised by its long-term laboratory propagation. In opposition, its introduction in vitro has the potential to affect the phenotype, likely yielding virulence attenuation. In fact, we observed a "genital-specific" rampant inactivation of the virulence gene CT135, which may impact the interpretation of data derived from studies requiring culture. Globally, the findings presented in this Ph.D. thesis contribute for the understanding of C.trachomatis adaptive evolution and provides new insights into the biological role of C. trachomatishypothetical proteins. They also launch research questions for future functional studies aiming toclarify the determinants of tissue tropism, virulence or pathogenic dissimilarities among C. trachomatisstrains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A celulose, principal componente da parede celular vegetal e o composto orgânico mais abundante da biosfera, possui inúmeras aplicações biotecnológicas. O microrganismo anaeróbio Clostridium thermocellum (C.thermocellum) tem sido alvo de grande interesse pela sua capacidade em degradar eficientemente a celulose e outros componentes da parede celular vegetal, por meio de um complexo multi-enzimático altamente eficiente, denominado de celulossoma. A montagem deste complexo ocorre através de uma proteína multi-modular denominada CipA. Esta proteína estrutural possui módulos não catalíticos (coesinas tipo I) que se ligam a módulos complementares (doquerinas tipo I) presentes nas enzimas celulolíticas modulares. A CipA possui ainda um módulo doquerina de tipo II que permite a ancoragem deste complexo multi-enzimático à parede celular da bactéria. Na presente dissertação foram utilizadas as metodologias de Cristalografia de Raios-X, para caracterizar a interação coesina-doquerina a nível atómico e molecular, e de Microarrays, com o intuito de estudar as possíveis especifidades e afinidades dessas interações. Com base na primeira técnica foram elucidadas as estruturas do módulo coesina C4 da CipA em complexo com a doquerina da enzima modular Xyn10B e do módulo coesina C9 isolado. As estruturas foram comparadas com o complexo do módulo coesina C2-doquerina Xyn10B já publicado. Esta análise encontra-se descrita no capítulo 3. Por último, a técnica de Microarrays, associada à eletroforese em gel de poliacrilamida em condições nativas, permitiu a caracterização das diferenças de afinidade e especificidade entre os vários pares coesina-doquerina dos celulossomas de C. thermocellum e de Rumminococcus flavefaciens (R. flavefaciens). As especificidades e afinidades dos módulos doquerina, dos celulossomas mencionados anteriormente estão descritas no capítulo 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular diseases (CVDs) are one of the leading causes of death and disability worldwide and one of its underlying causes is hypercholesterolemia. Hypercholesterolemia can have genetic (familial hypercholesterolemia, FH) and non-genetic causes (clinical hypercholesterolemia, CH), the first much more severe, with occurrence of premature atherosclerosis. While the pathophysiological role of homocysteine (Hcy) on CVD is still controversial, molecular targeting of protein by S and N-homocysteinylation offers a new paradigm to be considered in the vascular pathogenesis of hypercholesterolemia. On this regard, the present study aims to give new insights on protein targeting by Hcy in both CH and FH conditions. A total of 187 subjects were included: 65 normolipidemic and 122 hypercholesterolemic. Total (tHcy) and free (fHcy) fractions were quantified in serum samples after validation of an HPLCFD method, to assess S-homocysteinylation. Also, the lactonase (LACase) activity of paraoxonase-1 (PON1) was quantified by a colorimetric assay, as a surrogate of N-homocysteinylation. tHcy does not differ among groups. Nevertheless, fHcy declines in the hypercholesterolemic groups, with more evidence to the FH population. Consequently, there seems to be an increase of Shomocysteinylation, regardless of lipid lowering therapy (LLT). Also, despite of LLT use, LACase activity is lower in FH, thus the risk for protein N-homocysteinylation seems to be higher. Moreover, the decrease in LACase/ApoA1 and LACase/HDL ratios in FH, shows that HDL is dysfunctional in this population, despite its normal concentration values. Data supports that the pathophysiological role of Hcy on hypercholesterolemia may reside in its ability to post-translationally modify proteins. This role is particularly evident in FH condition. In the future, it will be interesting to identify which target proteins are modified and thus involved in vascular pathology progression.