68 resultados para Supply network mapping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Release of chloroethene compounds into the environment often results in groundwater contamination, which puts people at risk of exposure by drinking contaminated water. cDCE (cis-1,2-dichloroethene) accumulation on subsurface environments is a common environmental problem due to stagnation and partial degradation of other precursor chloroethene species. Polaromonas sp. strain JS666 apparently requires no exotic growth factors to be used as a bioaugmentation agent for aerobic cDCE degradation. Although being the only suitable microorganism found capable of such, further studies are needed for improving the intrinsic bioremediation rates and fully comprehend the metabolic processes involved. In order to do so, a metabolic model, iJS666, was reconstructed from genome annotation and available bibliographic data. FVA (Flux Variability Analysis) and FBA (Flux Balance Analysis) techniques were used to satisfactory validate the predictive capabilities of the iJS666 model. The iJS666 model was able to predict biomass growth for different previously tested conditions, allowed to design key experiments which should be done for further model improvement and, also, produced viable predictions for the use of biostimulant metabolites in the cDCE biodegradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the paper is to investigate the effectiveness of supply chain management (SCM) practices to increase a company’s performance based on a cross-border and cross-sector analysis. The paper follows a comparative case study approach which was achieved by interviewing supply chain management experts of three companies operating in different industries and positions in a supply chain. Practices that were mutually applied by the firms and their contribution to achieve quality, economic, cost, and time advantages were analyzed. The paper revealed practices, which contribute the most to increase specific performance areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many municipal activities require updated large-scale maps that include both topographic and thematic information. For this purpose, the efficient use of very high spatial resolution (VHR) satellite imagery suggests the development of approaches that enable a timely discrimination, counting and delineation of urban elements according to legal technical specifications and quality standards. Therefore, the nature of this data source and expanding range of applications calls for objective methods and quantitative metrics to assess the quality of the extracted information which go beyond traditional thematic accuracy alone. The present work concerns the development and testing of a new approach for using technical mapping standards in the quality assessment of buildings automatically extracted from VHR satellite imagery. Feature extraction software was employed to map buildings present in a pansharpened QuickBird image of Lisbon. Quality assessment was exhaustive and involved comparisons of extracted features against a reference data set, introducing cartographic constraints from scales 1:1000, 1:5000, and 1:10,000. The spatial data quality elements subject to evaluation were: thematic (attribute) accuracy, completeness, and geometric quality assessed based on planimetric deviation from the reference map. Tests were developed and metrics analyzed considering thresholds and standards for the large mapping scales most frequently used by municipalities. Results show that values for completeness varied with mapping scales and were only slightly superior for scale 1:10,000. Concerning the geometric quality, a large percentage of extracted features met the strict topographic standards of planimetric deviation for scale 1:10,000, while no buildings were compliant with the specification for scale 1:1000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contém resumo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The way in which electricity networks operate is going through a period of significant change. Renewable generation technologies are having a growing presence and increasing penetrations of generation that are being connected at distribution level. Unfortunately, a renewable energy source is most of the time intermittent and needs to be forecasted. Current trends in Smart grids foresee the accommodation of a variety of distributed generation sources including intermittent renewable sources. It is also expected that smart grids will include demand management resources, widespread communications and control technologies required to use demand response are needed to help the maintenance in supply-demand balance in electricity systems. Consequently, smart household appliances with controllable loads will be likely a common presence in our homes. Thus, new control techniques are requested to manage the loads and achieve all the potential energy present in intermittent energy sources. This thesis is focused on the development of a demand side management control method in a distributed network, aiming the creation of greater flexibility in demand and better ease the integration of renewable technologies. In particular, this work presents a novel multi-agent model-based predictive control method to manage distributed energy systems from the demand side, in presence of limited energy sources with fluctuating output and with energy storage in house-hold or car batteries. Specifically, here is presented a solution for thermal comfort which manages a limited shared energy resource via a demand side management perspective, using an integrated approach which also involves a power price auction and an appliance loads allocation scheme. The control is applied individually to a set of Thermal Control Areas, demand units, where the objective is to minimize the energy usage and not exceed the limited and shared energy resource, while simultaneously indoor temperatures are maintained within a comfort frame. Thermal Control Areas are overall thermodynamically connected in the distributed environment and also coupled by energy related constraints. The energy split is performed based on a fixed sequential order established from a previous completed auction wherein the bids are made by each Thermal Control Area, acting as demand side management agents, based on the daily energy price. The developed solutions are explained with algorithms and are applied to different scenarios, being the results explanatory of the benefits of the proposed approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis proposes a methodology for modelling business interoperability in a context of cooperative industrial networks. The purpose is to develop a methodology that enables the design of cooperative industrial network platforms that are able to deliver business interoperability and the analysis of its impact on the performance of these platforms. To achieve the proposed objective, two modelling tools have been employed: the Axiomatic Design Theory for the design of interoperable platforms; and Agent-Based Simulation for the analysis of the impact of business interoperability. The sequence of the application of the two modelling tools depends on the scenario under analysis, i.e. whether the cooperative industrial network platform exists or not. If the cooperative industrial network platform does not exist, the methodology suggests first the application of the Axiomatic Design Theory to design different configurations of interoperable cooperative industrial network platforms, and then the use of Agent-Based Simulation to analyse or predict the business interoperability and operational performance of the designed configurations. Otherwise, one should start by analysing the performance of the existing platform and based on the achieved results, decide whether it is necessary to redesign it or not. If the redesign is needed, simulation is once again used to predict the performance of the redesigned platform. To explain how those two modelling tools can be applied in practice, a theoretical modelling framework, a theoretical Axiomatic Design model and a theoretical Agent-Based Simulation model are proposed. To demonstrate the applicability of the proposed methodology and/or to validate the proposed theoretical models, a case study regarding a Portuguese Reverse Logistics cooperative network (Valorpneu network) and a case study regarding a Portuguese construction project (Dam Baixo Sabor network) are presented. The findings of the application of the proposed methodology to these two case studies suggest that indeed the Axiomatic Design Theory can effectively contribute in the design of interoperable cooperative industrial network platforms and that Agent-Based Simulation provides an effective set of tools for analysing the impact of business interoperability on the performance of those platforms. However, these conclusions cannot be generalised as only two case studies have been carried out. In terms of relevance to theory, this is the first time that the network effect is addressed in the analysis of the impact of business interoperability on the performance of networked companies and also the first time that a holistic approach is proposed to design interoperable cooperative industrial network platforms. Regarding the practical implications, the proposed methodology is intended to provide industrial managers a management tool that can guide them easily, and in practical and systematic way, in the design of configurations of interoperable cooperative industrial network platforms and/or in the analysis of the impact of business interoperability on the performance of their companies and the networks where their companies operate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.