65 resultados para Hierarchical Spatial Classification
Resumo:
This dissertation presents a solution for environment sensing using sensor fusion techniques and a context/environment classification of the surroundings in a service robot, so it could change his behavior according to the different rea-soning outputs. As an example, if a robot knows he is outdoors, in a field environment, there can be a sandy ground, in which it should slow down. Contrariwise in indoor environments, that situation is statistically unlikely to happen (sandy ground). This simple assumption denotes the importance of context-aware in automated guided vehicles.
Resumo:
RESUMO: A estrutura demográfica portuguesa é marcada por baixas taxas de natalidade e mortalidade, onde a população idosa representa uma fatia cada vez mais representativa, fruto de uma maior longevidade. A incidência do cancro, na sua generalidade, é maior precisamente nessa classe etária. A par de outras doenças igualmente lesivas (e.g. cardiovasculares, degenerativas) cuja incidência aumenta com a idade, o cancro merece relevo. Estudos epidemiológicos apresentam o cancro como líder mundial na mortalidade. Em países desenvolvidos, o seu peso representa 25% do número total de óbitos, percentagem essa que mais que duplica noutros países. A obesidade, a baixa ingestão de frutas e vegetais, o sedentarismo, o consumo de tabaco e a ingestão de álcool, configuram-se como cinco dos fatores de risco presentes em 30% das mortes diagnosticadas por cancro. A nível mundial e, em particular no Sul de Portugal, os cancros do estômago, recto e cólon apresentam elevadas taxas de incidência e de mortalidade. Do ponto de vista estritamente económico, o cancro é a doença que mais recursos consome enquanto que do ponto de vista físico e psicológico é uma doença que não limita o seu raio de ação ao doente. O cancro é, portanto, uma doença sempre atual e cada vez mais presente, pois reflete os hábitos e o ambiente de uma sociedade, não obstante as características intrínsecas a cada indivíduo. A adoção de metodologia estatística aplicada à modelação de dados oncológicos é, sobretudo, valiosa e pertinente quando a informação é oriunda de Registos de Cancro de Base Populacional (RCBP). A pertinência é justificada pelo fato destes registos permitirem aferir numa população específica, o risco desta sofrer e/ou vir a sofrer de uma dada neoplasia. O peso que as neoplasias do estômago, cólon e recto assumem foi um dos elementos que motivou o presente estudo que tem por objetivo analisar tendências, projeções, sobrevivências relativas e a distribuição espacial destas neoplasias. Foram considerados neste estudo todos os casos diagnosticados no período 1998-2006, pelo RCBP da região sul de Portugal (ROR-Sul). O estudo descritivo inicial das taxas de incidência e da tendência em cada uma das referidas neoplasias teve como base uma única variável temporal - o ano de diagnóstico - também designada por período. Todavia, uma metodologia que contemple apenas uma única variável temporal é limitativa. No cancro, para além do período, a idade à data do diagnóstico e a coorte de nascimento, são variáveis temporais que poderão prestar um contributo adicional na caracterização das taxas de incidência. A relevância assumida por estas variáveis temporais justificou a sua inclusão numaclasse de modelos designada por modelos Idade-Período-Coorte (Age-Period-Cohort models - APC), utilizada na modelação das taxas de incidência para as neoplasias em estudo. Os referidos modelos permitem ultrapassar o problema de relações não lineares e/ou de mudanças súbitas na tendência linear das taxas. Nos modelos APC foram consideradas a abordagem clássica e a abordagem com recurso a funções suavizadoras. A modelação das taxas foi estratificada por sexo. Foram ainda estudados os respectivos submodelos (apenas com uma ou duas variáveis temporais). Conhecido o comportamento das taxas de incidência, uma questão subsequente prende-se com a sua projeção em períodos futuros. Porém, o efeito de mudanças estruturais na população, ao qual Portugal não é alheio, altera substancialmente o número esperado de casos futuros com cancro. Estimativas da incidência de cancro a nível mundial obtidas a partir de projeções demográficas apontam para um aumento de 25% dos casos de cancro nas próximas duas décadas. Embora a projeção da incidência esteja associada a alguma incerteza, as projeções auxiliam no planeamento de políticas de saúde para a afetação de recursos e permitem a avaliação de cenários e de intervenções que tenham como objetivo a redução do impacto do cancro. O desconhecimento de projeções da taxa de incidência destas neoplasias na área abrangida pelo ROR-Sul, levou à utilização de modelos de projeção que diferem entre si quanto à sua estrutura, linearidade (ou não) dos seus coeficientes e comportamento das taxas na série histórica de dados (e.g. crescente, decrescente ou estável). Os referidos modelos pautaram-se por duas abordagens: (i)modelos lineares no que concerne ao tempo e (ii) extrapolação de efeitos temporais identificados pelos modelos APC para períodos futuros. Foi feita a projeção das taxas de incidência para os anos de 2007 a 2010 tendo em conta o género, idade e neoplasia. É ainda apresentada uma estimativa do impacto económico destas neoplasias no período de projeção. Uma questão pertinente e habitual no contexto clínico e a que o presente estudo pretende dar resposta, reside em saber qual a contribuição da neoplasia em si para a sobrevivência do doente. Nesse sentido, a mortalidade por causa específica é habitualmente utilizada para estimar a mortalidade atribuível apenas ao cancro em estudo. Porém, existem muitas situações em que a causa de morte é desconhecida e, mesmo que esta informação esteja disponível através dos certificados de óbito, não é fácil distinguir os casos em que a principal causa de morte é devida ao cancro. A sobrevivência relativa surge como uma medida objetiva que não necessita do conhecimento da causa específica da morte para o seu cálculo e dar-nos-á uma estimativa da probabilidade de sobrevivência caso o cancro em análise, num cenário hipotético, seja a única causa de morte. Desconhecida a principal causa de morte nos casos diagnosticados com cancro no registo ROR-Sul, foi determinada a sobrevivência relativa para cada uma das neoplasias em estudo, para um período de follow-up de 5 anos, tendo em conta o sexo, a idade e cada uma das regiões que constituem o registo. Foi adotada uma análise por período e as abordagens convencional e por modelos. No epílogo deste estudo, é analisada a influência da variabilidade espaço-temporal nas taxas de incidência. O longo período de latência das doenças oncológicas, a dificuldade em identificar mudanças súbitas no comportamento das taxas, populações com dimensão e riscos reduzidos, são alguns dos elementos que dificultam a análise da variação temporal das taxas. Nalguns casos, estas variações podem ser reflexo de flutuações aleatórias. O efeito da componente temporal aferida pelos modelos APC dá-nos um retrato incompleto da incidência do cancro. A etiologia desta doença, quando conhecida, está associada com alguma frequência a fatores de risco tais como condições socioeconómicas, hábitos alimentares e estilo de vida, atividade profissional, localização geográfica e componente genética. O “contributo”, dos fatores de risco é, por vezes, determinante e não deve ser ignorado. Surge, assim, a necessidade em complementar o estudo temporal das taxas com uma abordagem de cariz espacial. Assim, procurar-se-á aferir se as variações nas taxas de incidência observadas entre os concelhos inseridos na área do registo ROR-Sul poderiam ser explicadas quer pela variabilidade temporal e geográfica quer por fatores socioeconómicos ou, ainda, pelos desiguais estilos de vida. Foram utilizados os Modelos Bayesianos Hierárquicos Espaço-Temporais com o objetivo de identificar tendências espaço-temporais nas taxas de incidência bem como quantificar alguns fatores de risco ajustados à influência simultânea da região e do tempo. Os resultados obtidos pela implementação de todas estas metodologias considera-se ser uma mais valia para o conhecimento destas neoplasias em Portugal.------------ABSTRACT: mortality rates, with the elderly being an increasingly representative sector of the population, mainly due to greater longevity. The incidence of cancer, in general, is greater precisely in that age group. Alongside with other equally damaging diseases (e.g. cardiovascular,degenerative), whose incidence rates increases with age, cancer is of special note. In epidemiological studies, cancer is the global leader in mortality. In developed countries its weight represents 25% of the total number of deaths, with this percentage being doubled in other countries. Obesity, a reduce consumption of fruit and vegetables, physical inactivity, smoking and alcohol consumption, are the five risk factors present in 30% of deaths due to cancer. Globally, and in particular in the South of Portugal, the stomach, rectum and colon cancer have high incidence and mortality rates. From a strictly economic perspective, cancer is the disease that consumes more resources, while from a physical and psychological point of view, it is a disease that is not limited to the patient. Cancer is therefore na up to date disease and one of increased importance, since it reflects the habits and the environment of a society, regardless the intrinsic characteristics of each individual. The adoption of statistical methodology applied to cancer data modelling is especially valuable and relevant when the information comes from population-based cancer registries (PBCR). In such cases, these registries allow for the assessment of the risk and the suffering associated to a given neoplasm in a specific population. The weight that stomach, colon and rectum cancers assume in Portugal was one of the motivations of the present study, that focus on analyzing trends, projections, relative survival and spatial distribution of these neoplasms. The data considered in this study, are all cases diagnosed between 1998 and 2006, by the PBCR of Portugal, ROR-Sul.Only year of diagnosis, also called period, was the only time variable considered in the initial descriptive analysis of the incidence rates and trends for each of the three neoplasms considered. However, a methodology that only considers one single time variable will probably fall short on the conclusions that could be drawn from the data under study. In cancer, apart from the variable period, the age at diagnosis and the birth cohort are also temporal variables and may provide an additional contribution to the characterization of the incidence. The relevance assumed by these temporal variables justified its inclusion in a class of models called Age-Period-Cohort models (APC). This class of models was used for the analysis of the incidence rates of the three cancers under study. APC models allow to model nonlinearity and/or sudden changes in linear relationships of rate trends. Two approaches of APC models were considered: the classical and the one using smoothing functions. The models were stratified by gender and, when justified, further studies explored other sub-models where only one or two temporal variables were considered. After the analysis of the incidence rates, a subsequent goal is related to their projections in future periods. Although the effect of structural changes in the population, of which Portugal is not oblivious, may substantially change the expected number of future cancer cases, the results of these projections could help planning health policies with the proper allocation of resources, allowing for the evaluation of scenarios and interventions that aim to reduce the impact of cancer in a population. Worth noting that cancer incidence worldwide obtained from demographic projections point out to an increase of 25% of cancer cases in the next two decades. The lack of projections of incidence rates of the three cancers under study in the area covered by ROR-Sul, led us to use a variety of forecasting models that differ in the nature and structure. For example, linearity or nonlinearity in their coefficients and the trend of the incidence rates in historical data series (e.g. increasing, decreasing or stable).The models followed two approaches: (i) linear models regarding time and (ii) extrapolation of temporal effects identified by the APC models for future periods. The study provide incidence rates projections and the numbers of newly diagnosed cases for the year, 2007 to 2010, taking into account gender, age and the type of cancer. In addition, an estimate of the economic impact of these neoplasms is presented for the projection period considered. This research also try to address a relevant and common clinical question in these type of studies, regarding the contribution of the type of cancer to the patient survival. In such studies, the primary cause of death is commonly used to estimate the mortality specifically due to the cancer. However, there are many situations in which the cause of death is unknown, or, even if this information is available through the death certificates, it is not easy to distinguish the cases where the primary cause of death is the cancer. With this in mind, the relative survival is an alternative measure that does not need the knowledge of the specific cause of death to be calculated. This estimate will represent the survival probability in the hypothetical scenario of a certain cancer be the only cause of death. For the patients with unknown cause of death that were diagnosed with cancer in the ROR-Sul, the relative survival was calculated for each of the cancers under study, for a follow-up period of 5 years, considering gender, age and each one of the regions that are part the registry. A period analysis was undertaken, considering both the conventional and the model approaches. In final part of this study, we analyzed the influence of space-time variability in the incidence rates. The long latency period of oncologic diseases, the difficulty in identifying subtle changes in the rates behavior, populations of reduced size and low risk are some of the elements that can be a challenge in the analysis of temporal variations in rates, that, in some cases, can reflect simple random fluctuations. The effect of the temporal component measured by the APC models gives an incomplete picture of the cancer incidence. The etiology of this disease, when known, is frequently associated to risk factors such as socioeconomic conditions, eating habits and lifestyle, occupation, geographic location and genetic component. The "contribution"of such risk factors is sometimes decisive in the evolution of the disease and should not be ignored. Therefore, there was the need to consider an additional approach in this study, one of spatial nature, addressing the fact that changes in incidence rates observed in the ROR-Sul area, could be explained either by temporal and geographical variability or by unequal socio-economic or lifestyle factors. Thus, Bayesian hierarchical space-time models were used with the purpose of identifying space-time trends in incidence rates together with the the analysis of the effect of the risk factors considered in the study. The results obtained and the implementation of all these methodologies are considered to be an added value to the knowledge of these neoplasms in Portugal.
Resumo:
This paper presents an embryo of a literary guide on the Carnation Revolution to be explored for educational historical excursions other than leisure and tourism. We propose a historical trail through the centre of Lisbon, city of the Carnation Revolution, called Walk through the Revolution. The trail aims to reinforce collective memory about the major events that occurred in the early moments leading to the coup. The trail is made up by nine places of rememberance, for which literary excerpts are suggested and which are supported by a digital research procedure. A set of seven fixed and observer-independent categories are used to analyse the literary contents of 23 literary works published up to 2013. These literary works refer to events that happened between the eve of April 25 and May 1, 1974. At the same time, literary descriptions are explored using a spatial approach in order to define the literary geography of the most iconic military actions and popular demonstrations that occurred in Lisbon and the surroundings. The literary geography and the cartography of the historical events are then compared. Data analysis and visualization benefit from the use of standardised and quantitative methods, including basic statistics and geographic information systems.
Resumo:
Remote sensing - the acquisition of information about an object or phenomenon without making physical contact with the object - is applied in a multitude of different areas, ranging from agriculture, forestry, cartography, hydrology, geology, meteorology, aerial traffic control, among many others. Regarding agriculture, an example of application of this information is regarding crop detection, to monitor existing crops easily and help in the region’s strategic planning. In any of these areas, there is always an ongoing search for better methods that allow us to obtain better results. For over forty years, the Landsat program has utilized satellites to collect spectral information from Earth’s surface, creating a historical archive unmatched in quality, detail, coverage, and length. The most recent one was launched on February 11, 2013, having a number of improvements regarding its predecessors. This project aims to compare classification methods in Portugal’s Ribatejo region, specifically regarding crop detection. The state of the art algorithms will be used in this region and their performance will be analyzed.
Resumo:
Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.