87 resultados para Functional Interface Point
Resumo:
Dissertação para obtenção do Grau de Doutor em Sistemas de Bioengenharia
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation presented to obtain the Ph.D degree in Engineering and Technology Sciences-Biotechnology
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para a obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
RESUMO: O envelhecimento demográfico da população associado aos avanços científicos fezcom que esse fenómeno se estendesse à população com dificuldade intelectual e desenvolvimental. O processo de envelhecimento na população com DID acarreta novas formas de dependência, carências e perdas que, associadas à deficiência assumem contornos de dupla vulnerabilidade: ser idoso e ser deficiente. Objetivos, deste estudo foram caraterizar o perfil de funcionalidade numa população adulta com DID e apurar de que forma é que os aspectos sociodemográficos, condição de saúde, estado nutricional e redes socias de apoio interferem nesse perfil. Metodologia, aplicou-se a Escala de Comportamento Adaptativo versão Portuguesa a uma amostra de 40 indivíduos com DID, procedeu-se ao estudo da relação entre os vários domínios da escala e os diferentes aspetos anteriormente mencionados. Resultados, apontam para o facto, de tal como na população em geral, o processo de envelhecimento desta população variar em função do estado de saúde, das limitações da própria deficiência e da existência de sistema de apoios mais do que a idade cronológica. Conclusão, o envelhecimento da população com DID é um fenómeno recente sendo por isso importante ter um conhecimento mais aprofundado das suas caraterísticas e necessidades. A ECAP revelou ser um instrumento que permite avaliar o desempenho funcional desta população distinguindo-a da restante população idosa contribuindo assim, para o desenvolvimento de planos e programas de intervenção mais adequados.-------------ABSTRACT: The aging of the population associated with scientific advances made this phenomenon extend to the population with intellectual and developmental difficulties. The aging process in people with DID entails new forms of dependence, shortages and losses, associated with disability take contours of double vulnerability: being elderly and being disabled. Objectives, in this study were to characterize the profile functionality in an adult population with DID and determine how it is that their sociodemographic characteristics, health status, nutritional status and members support networks affect this listing. Methodology, was applied the adaptive behavior scale Portuguese version to a sample of 40 individuals with DID, we proceeded to study the relationship between the various domains of the scale and the different aspects mentioned above. Results, point to the fact, such as in the general population, the aging of the population vary depending on the state of health, of the limitations of the disability itself and the existence of support rather than chronological age system. Conclusion, an aging population with DID is a recent phenomenon and is therefore important to have a broader knowledge of their characteristics and needs. ECAP has proved to be a tool to evaluate the functional performance of this population distinguished from the remaining elderly population, thus contributing to the development of plans and most appropriate intervention programs. aging, adaptive behavior scale.
Resumo:
Dissertação para obtenção do Grau de Mestre em Bioquímica
Resumo:
Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
Fundação para a Ciência e Tecnologia - EXPL/BBB-BEP/0274/2012
Resumo:
Mannans (linear mannan, glucomannan, galactomannan and galactoglucomannan) are the major constituents of the hemicellulose fraction in softwoods and show great importance as a renewable resource for fuel or feedstock applications. As complex polysaccharides, mannans can only be degraded through a synergistic action of different mannan-degrading enzymes, mannanases. Microbial mannanases are mainly extracellular enzymes that can act in wide range of pH and temperature, contributing to pulp and paper, pharmaceutical, food and feed, oil and textile successful industrial applications. Knowing and controlling these microbial mannan-degrading enzymes are essential to take advantage of their great biotechnological potential. The genome of the laboratory 168 strain of Bacillus subtilis carries genes gmuA-G dedicated to the degradation and utilization of glucomannan, including an extracellular -mannanase. Recently, the genome sequence of an undomesticated strain of B. subtilis, BSP1, was determined. In BSP1, the gmuA-G operon is maintained, interestingly, however, a second cluster of genes was found (gam cluster), which comprise a second putative extracellular β-mannanase, and most likely specify a system for the degradation and utilization of a different mannan polymer, galactoglucomannan. The genetic organization and function of the gam cluster, and whether its presence in BSP1 strain results in new hemicellulolytic capabilities, compared to those of the laboratory strain, was address in this work. In silico and in vivo mRNA analyses performed in this study revealed that the gam cluster, comprising nine genes, is organized and expressed in at least six different transcriptional units. Furthermore, cloning, expression, and production of Bbsp2923 in Escherichia coli was achieved and preliminary characterization shows that the enzyme is indeed a β-mannanase. Finally, the high hemicellulolytic capacity of the undomesticated B. subtilis BSP1, demonstrated in this work by qualitative analyses, suggests potential to be used in the food and feed industries.
Resumo:
Theawareness that fossil fuels exist in limited quantities has stimulated research into energy production from renewable sources. Future energy sources! should! be! plentiful! with! negligible! impact! on! the! environment.! Hydrogen!has!the!potential!to!satisfy!these!requirements.!Nevertheless,!current! methods! of! H2! production! rely! on! nonOrenewable! resources.! Biological! H2! production! from! sunlight! or! biomass! is! an! appealing! alternative! to! current! production!methods.!!(...)
Resumo:
Grapevine (Vitis vinifera) is one of most agro-economically important fruit crops worldwide, with a special relevance in Portugal where over 300 varieties are used for wine production. Due to global warming, temperature stress is currently a serious issue affecting crop production especially in temperate climates. Mobile genetic elements such as retrotransposons have been shown to be involved in environmental stress induced genetic and epigenetic modifications. In this study, sequences related to Grapevine Retrotransposon 1 (Gret1) were utilized to determine heat induced genomic and transcriptomic modifications in Touriga Nacional, a traditional Portuguese grapevine variety. For this purpose, growing canes were treated to 42 oC for four hours and leaf genomic DNA and RNA was utilized for various techniques to observe possible genomic alterations and variation in transcription levels of coding and non-coding sequences between non-treated plants and treated plants immediately after heat stress (HS-0 h) or after a 24 hour recovery period (HS-24 h). Heat stress was found to induce a significant decrease in Gret1 related sequences in HS-24 h leaves, indicating an effect of heat stress on genomic structure. In order to identify putative heat induced DNA modifications, genome wide approaches such as Amplified Fragment Length Polymorphism were utilized. This resulted in the identification of a polymorphic DNA fragment in HS-0 h and HS-24 h leaves whose sequence mapped to a genomic region flanking a house keeping gene (NADH) that is represented in multiple copies in the Vitis vinifera genome. Heat stress was also found to affect the transcript levels of various non-coding and gene coding sequences. Accordingly, quantitative real time PCR results established that Gret1 related sequences are up regulated immediately after heat stress whereas the level of transcript of genes involved in identification and repair of double strand breaks are significantly down regulated in HS-0 h plants. Taken together, the results of this work demonstrated heat stress affects both genomic integrity and transcription levels.
Resumo:
The study of the effect of radiation on living tissues is a rather complex task to address mainly because they are made of a set of complex functional biological structures and interfaces. Particularly if one is looking for where damage is taking place in a first stage and what are the underlying reaction mechanisms. In this work a new approach is addressed to study the effect of radiation by making use of well identified molecular hetero-structures samples which mimic the biological environment. These were obtained by assembling onto a solid support deoxyribonucleic acid (DNA) and phospholipids together with a soft water-containing polyelectrolyte precursor in layered structures and by producing lipid layers at liquid/air interface with DNA as subphase. The effects of both ultraviolet (UV) radiation and carbon ions beams were systematically investigated in these heterostructures, namely damage on DNA by means vacuum ultraviolet (VUV), infrared (IR), X-Ray Photoelectron (XPS) and impedance spectroscopy. Experimental results revealed that UV affects furanose, PO2-, thymines, cytosines and adenines groups. The XPS spectrometry carried out on the samples allowed validate the VUV and IR results and to conclude that ionized phosphate groups, surrounded by the sodium counterions, congregate hydration water molecules which play a role of UV protection. The ac electrical conductivity measurements revealed that the DNA electrical conduction is arising from DNA chain electron hopping between base-pairs and phosphate groups, with the hopping distance equal to the distance between DNA base-pairs and is strongly dependent on UV radiation exposure, due loss of phosphate groups. Characterization of DNA samples exposed to a 4 keV C3+ ions beam revealed also carbon-oxygen bonds break, phosphate groups damage and formation of new species. Results from radiation induced damage carried out on biomimetic heterostructures having different compositions revealed that damage is dependent on sample composition, with respect to functional targeted groups and extent of damage. Conversely, LbL films of 1,2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) liposomes, alternated with poly(allylamine hydrochloride) (PAH) revealed to be unaffected, even by prolonged UV irradiation exposure, in the absence of water molecules. However, DPPG molecules were damaged by the UV radiation in presence of water with cleavage of C-O, C=O and –PO2- bonds. Finally, the study of DNA interaction with the ionic lipids at liquid/air interfaces revealed that electrical charge of the lipid influences the interaction of phospholipid with DNA. In the presence of DNA in the subphase, the effects from UV irrladiation were seen to be smaller, which means that ionic products from biomolecules degradation stabilize the intact DPPG molecules. This mechanism may explain why UV irradiation does not cause immediate cell collapse, thus providing time for the cellular machinery to repair elements damaged by UV.