68 resultados para Panel VAR models


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Amyotrophic Lateral Sclerosis (ALS) is the most severe and common adult onset disorder that affects motor neurons in the spinal cord, brainstem and cortex, resulting in progressive weakness and death from respiratory failure within two to five years of symptoms onset(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, a significant increase on the demand for interoperable systems for exchanging data in business collaborative environments has been noticed. Consequently, cooperation agreements between each of the involved enterprises have been brought to light. However, due to the fact that even in a same community or domain, there is a big variety of knowledge representation not semantically coincident, which embodies the existence of interoperability problems in the enterprises information systems that need to be addressed. Moreover, in relation to this, most organizations face other problems about their information systems, as: 1) domain knowledge not being easily accessible by all the stakeholders (even intra-enterprise); 2) domain knowledge not being represented in a standard format; 3) and even if it is available in a standard format, it is not supported by semantic annotations or described using a common and understandable lexicon. This dissertation proposes an approach for the establishment of an enterprise reference lexicon from business models. It addresses the automation in the information models mapping for the reference lexicon construction. It aggregates a formal and conceptual representation of the business domain, with a clear definition of the used lexicon to facilitate an overall understanding by all the involved stakeholders, including non-IT personnel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computational power is increasing day by day. Despite that, there are some tasks that are still difficult or even impossible for a computer to perform. For example, while identifying a facial expression is easy for a human, for a computer it is an area in development. To tackle this and similar issues, crowdsourcing has grown as a way to use human computation in a large scale. Crowdsourcing is a novel approach to collect labels in a fast and cheap manner, by sourcing the labels from the crowds. However, these labels lack reliability since annotators are not guaranteed to have any expertise in the field. This fact has led to a new research area where we must create or adapt annotation models to handle these weaklylabeled data. Current techniques explore the annotators’ expertise and the task difficulty as variables that influences labels’ correction. Other specific aspects are also considered by noisy-labels analysis techniques. The main contribution of this thesis is the process to collect reliable crowdsourcing labels for a facial expressions dataset. This process consists in two steps: first, we design our crowdsourcing tasks to collect annotators labels; next, we infer the true label from the collected labels by applying state-of-art crowdsourcing algorithms. At the same time, a facial expression dataset is created, containing 40.000 images and respective labels. At the end, we publish the resulting dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time collaborative editing systems are common nowadays, and their advantages are widely recognized. Examples of such systems include Google Docs, ShareLaTeX, among others. This thesis aims to adopt this paradigm in a software development environment. The OutSystems visual language lends itself very appropriate to this kind of collaboration, since the visual code enables a natural flow of knowledge between developers regarding the developed code. Furthermore, communication and coordination are simplified. This proposal explores the field of collaboration on a very structured and rigid model, where collaboration is made through the copy-modify-merge paradigm, in which a developer gets its own private copy from the shared repository, modifies it in isolation and later uploads his changes to be merged with modifications concurrently produced by other developers. To this end, we designed and implemented an extension to the OutSystems Platform, in order to enable real-time collaborative editing. The solution guarantees consistency among the artefacts distributed across several developers working on the same project. We believe that it is possible to achieve a much more intense collaboration over the same models with a low negative impact on the individual productivity of each developer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last few years, we have observed an exponential increasing of the information systems, and parking information is one more example of them. The needs of obtaining reliable and updated information of parking slots availability are very important in the goal of traffic reduction. Also parking slot prediction is a new topic that has already started to be applied. San Francisco in America and Santander in Spain are examples of such projects carried out to obtain this kind of information. The aim of this thesis is the study and evaluation of methodologies for parking slot prediction and the integration in a web application, where all kind of users will be able to know the current parking status and also future status according to parking model predictions. The source of the data is ancillary in this work but it needs to be understood anyway to understand the parking behaviour. Actually, there are many modelling techniques used for this purpose such as time series analysis, decision trees, neural networks and clustering. In this work, the author explains the best techniques at this work, analyzes the result and points out the advantages and disadvantages of each one. The model will learn the periodic and seasonal patterns of the parking status behaviour, and with this knowledge it can predict future status values given a date. The data used comes from the Smart Park Ontinyent and it is about parking occupancy status together with timestamps and it is stored in a database. After data acquisition, data analysis and pre-processing was needed for model implementations. The first test done was with the boosting ensemble classifier, employed over a set of decision trees, created with C5.0 algorithm from a set of training samples, to assign a prediction value to each object. In addition to the predictions, this work has got measurements error that indicates the reliability of the outcome predictions being correct. The second test was done using the function fitting seasonal exponential smoothing tbats model. Finally as the last test, it has been tried a model that is actually a combination of the previous two models, just to see the result of this combination. The results were quite good for all of them, having error averages of 6.2, 6.6 and 5.4 in vacancies predictions for the three models respectively. This means from a parking of 47 places a 10% average error in parking slot predictions. This result could be even better with longer data available. In order to make this kind of information visible and reachable from everyone having a device with internet connection, a web application was made for this purpose. Beside the data displaying, this application also offers different functions to improve the task of searching for parking. The new functions, apart from parking prediction, were: - Park distances from user location. It provides all the distances to user current location to the different parks in the city. - Geocoding. The service for matching a literal description or an address to a concrete location. - Geolocation. The service for positioning the user. - Parking list panel. This is not a service neither a function, is just a better visualization and better handling of the information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Domestication of plants and plant breeding have dramatically eroded the allelic variations of crop species which led to an increasing susceptibility of crop plants to environmental stresses, diseases and pests. Drought is a major environmental stress factor that affects the growth and development of plants so the selection of tolerant genotypes becomes increasingly important with respect to the predicted effects of global warming. In this study, several genotypes of Spelt (Triticum aestivum var. spelta) were tested under low water supply in soil with the aim of to find Spelt genotypes more resistant than wheat to these conditions, and select them so that in future may be used to improve wheat crops. Morphological analyses were performed and mineral and enzymatic analyses and also dry matter production were calculated. Our results suggests that the genotypes Sp53, Sp96, Sp912, Sp757 and Sp804 are a potential ones to use in breeding programs to improve wheat production. Under drought, these genotypes had growth efficiency of 38%, 45%, 64%, 37%, and 31% respectively and also showed higher biomass than modern wheat and were also mineralogical richer. The genotypes Sp96 and Sp912 showed highest activity of all antioxidants enzymes tested. This work proves that Spelt is a good wheat to continue to study in order to improve wheat crops in dry areas and consequently increase the quality of life and health of the populations living in those areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the project is to measure the impact of fiscal policy on the Portuguese GDP and how it may vary according to the state of the financial market. A Threshold VAR model is presented in which the two regimes are found using a financial stress index that divides the economy into a situation of financial stress and financial stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the in-, and out-of sample, predictability of the stock market returns from Eurozone’s banking sectors, arising from bank-specific ratios and macroeconomic variables, using panel estimation techniques. In order to do that, I set an unbalanced panel of 116 banks returns, from April, 1991, to March, 2013, to constitute equal-weighted country-sorted portfolios representative of the Austrian, Belgian, Finish, French, German, Greek, Irish, Italian, Portuguese and Spanish banking sectors. I find that both earnings per share (EPS) and the ratio of total loans to total assets have in-sample predictive power over the portfolios’ monthly returns whereas, regarding the cross-section of annual returns, only EPS retain significant explanatory power. Nevertheless, the sign associated with the impact of EPS is contrarian to the results of past literature. When looking at inter-yearly horizon returns, I document in-sample predictive power arising from the ratios of provisions to net interest income, and non-interest income to net income. Regarding the out-of-sample performance of the proposed models, I find that these would only beat the portfolios’ historical mean on the month following the disclosure of year-end financial statements. Still, the evidence found is not statistically significant. Finally, in a last attempt to find significant evidence of predictability of monthly and annual returns, I use Fama and French 3-Factor and Carhart models to describe the cross-section of returns. Although in-sample the factors can significantly track Eurozone’s banking sectors’ stock market returns, they do not beat the portfolios’ historical mean when forecasting returns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the significance of culture in examining the relationshipbetween democratic capital and environmental performance.The aim is to examine the relationship among scores on the Environmental Performance Index and the two dimensions of cross cultural variation suggested by Ronald Inglehart and Christian Welzel. Significantional interrelationships among democracy, cultural and environmental sustaintability measures could be found, following the regression results. Firstly, higher levels of democratic capital stock are associated with better environmental performance. Secondly importance to distinguish between cultural groups could be confirmed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of human cell models that recapitulate hepatic functionality allows the study of metabolic pathways involved in toxicity and disease. The increased biological relevance, cost-effectiveness and high-throughput of cell models can contribute to increase the efficiency of drug development in the pharmaceutical industry. Recapitulation of liver functionality in vitro requires the development of advanced culture strategies to mimic in vivo complexity, such as 3D culture, co-cultures or biomaterials. However, complex 3D models are typically associated with poor robustness, limited scalability and compatibility with screening methods. In this work, several strategies were used to develop highly functional and reproducible spheroid-based in vitro models of human hepatocytes and HepaRG cells using stirred culture systems. In chapter 2, the isolation of human hepatocytes from resected liver tissue was implemented and a liver tissue perfusion method was optimized towards the improvement of hepatocyte isolation and aggregation efficiency, resulting in an isolation protocol compatible with 3D culture. In chapter 3, human hepatocytes were co-cultivated with mesenchymal stem cells (MSC) and the phenotype of both cell types was characterized, showing that MSC acquire a supportive stromal function and hepatocytes retain differentiated hepatic functions, stability of drug metabolism enzymes and higher viability in co-cultures. In chapter 4, a 3D alginate microencapsulation strategy for the differentiation of HepaRG cells was evaluated and compared with the standard 2D DMSO-dependent differentiation, yielding higher differentiation efficiency, comparable levels of drug metabolism activity and significantly improved biosynthetic activity. The work developed in this thesis provides novel strategies for 3D culture of human hepatic cell models, which are reproducible, scalable and compatible with screening platforms. The phenotypic and functional characterization of the in vitro systems performed contributes to the state of the art of human hepatic cell models and can be applied to the improvement of pre-clinical drug development efficiency of the process, model disease and ultimately, development of cell-based therapeutic strategies for liver failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops the model of Bicego, Grosso, and Otranto (2008) and applies Hidden Markov Models to predict market direction. The paper draws an analogy between financial markets and speech recognition, seeking inspiration from the latter to solve common issues in quantitative investing. Whereas previous works focus mostly on very complex modifications of the original hidden markov model algorithm, the current paper provides an innovative methodology by drawing inspiration from thoroughly tested, yet simple, speech recognition methodologies. By grouping returns into sequences, Hidden Markov Models can then predict market direction the same way they are used to identify phonemes in speech recognition. The model proves highly successful in identifying market direction but fails to consistently identify whether a trend is in place. All in all, the current paper seeks to bridge the gap between speech recognition and quantitative finance and, even though the model is not fully successful, several refinements are suggested and the room for improvement is significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The life of humans and most living beings depend on sensation and perception for the best assessment of the surrounding world. Sensorial organs acquire a variety of stimuli that are interpreted and integrated in our brain for immediate use or stored in memory for later recall. Among the reasoning aspects, a person has to decide what to do with available information. Emotions are classifiers of collected information, assigning a personal meaning to objects, events and individuals, making part of our own identity. Emotions play a decisive role in cognitive processes as reasoning, decision and memory by assigning relevance to collected information. The access to pervasive computing devices, empowered by the ability to sense and perceive the world, provides new forms of acquiring and integrating information. But prior to data assessment on its usefulness, systems must capture and ensure that data is properly managed for diverse possible goals. Portable and wearable devices are now able to gather and store information, from the environment and from our body, using cloud based services and Internet connections. Systems limitations in handling sensorial data, compared with our sensorial capabilities constitute an identified problem. Another problem is the lack of interoperability between humans and devices, as they do not properly understand human’s emotional states and human needs. Addressing those problems is a motivation for the present research work. The mission hereby assumed is to include sensorial and physiological data into a Framework that will be able to manage collected data towards human cognitive functions, supported by a new data model. By learning from selected human functional and behavioural models and reasoning over collected data, the Framework aims at providing evaluation on a person’s emotional state, for empowering human centric applications, along with the capability of storing episodic information on a person’s life with physiologic indicators on emotional states to be used by new generation applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural disasters are events that cause general and widespread destruction of the built environment and are becoming increasingly recurrent. They are a product of vulnerability and community exposure to natural hazards, generating a multitude of social, economic and cultural issues of which the loss of housing and the subsequent need for shelter is one of its major consequences. Nowadays, numerous factors contribute to increased vulnerability and exposure to natural disasters such as climate change with its impacts felt across the globe and which is currently seen as a worldwide threat to the built environment. The abandonment of disaster-affected areas can also push populations to regions where natural hazards are felt more severely. Although several actors in the post-disaster scenario provide for shelter needs and recovery programs, housing is often inadequate and unable to resist the effects of future natural hazards. Resilient housing is commonly not addressed due to the urgency in sheltering affected populations. However, by neglecting risks of exposure in construction, houses become vulnerable and are likely to be damaged or destroyed in future natural hazard events. That being said it becomes fundamental to include resilience criteria, when it comes to housing, which in turn will allow new houses to better withstand the passage of time and natural disasters, in the safest way possible. This master thesis is intended to provide guiding principles to take towards housing recovery after natural disasters, particularly in the form of flood resilient construction, considering floods are responsible for the largest number of natural disasters. To this purpose, the main structures that house affected populations were identified and analyzed in depth. After assessing the risks and damages that flood events can cause in housing, a methodology was proposed for flood resilient housing models, in which there were identified key criteria that housing should meet. The same methodology is based in the US Federal Emergency Management Agency requirements and recommendations in accordance to specific flood zones. Finally, a case study in Maldives – one of the most vulnerable countries to sea level rise resulting from climate change – has been analyzed in light of housing recovery in a post-disaster induced scenario. This analysis was carried out by using the proposed methodology with the intent of assessing the resilience of the newly built housing to floods in the aftermath of the 2004 Indian Ocean Tsunami.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is titled “The Future of Airline Business Models: Which Will Win?” and it is part of the requirements for the award of a Masters in Management from NOVA BSE and another from Luiss Guido Carlo University. The purpose is to elaborate a complete market analysis of the European Air Transportation Industry in order to predict which Airlines, strategies and business models may be successful in the next years. First, an extensive literature review of the business model concept has been done. Then, a detailed overview of the main European Airlines and the strategies that they have been implementing so far has been developed. Finally, the research is illustrated with three case studies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Working Project studies five portfolios of currency carry trades formed with the G10 currencies. Performance varies among strategies and the most basic one presents the worst results. I also study the equity and Pure FX risk factors which can explain the portfolios’ returns. Equity factors do not explain these returns while the Pure FX do for some of the strategies. Downside risk measures indicate the importance of using regime indicators to avoid losses. I conclude that although using VAR and threshold regression models with a variety of regime indicators do not allow the perception of different regimes, with a defined exogenous threshold on real exchange rates, an indicator of liquidity and the volatilities of the spot exchange rates it is possible to increase the average returns and reduce drawdowns of the carry trades