75 resultados para Development of Competence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química, especialidade Química Orgânica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Genética Molecular e Biomedicina

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia do Ambiente

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química, especialidade Química Orgânica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organisms produce correctly patterned structures across a wide range of organ and body sizes. Despite considerable work revealing the mechanisms that regulate the growth and patterning of organs, those responsible for coordinating organ development with whole-body development are still largely unknown.(...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, biocompatible and biodegradable poly(D-L-lactide-co-glycolide) (PLGA) microparticles with the potential for use as a controlled release system of vaccines and other drugs to the lung were manufactured using supercritical CO2, through the Supercritical Assisted Atomization (SAA) technique. After performing a controlled variance in production parameters (temperature, pressure, CO2/solution flow ratio) PLGA microparticles were characterized and later used to encapsulate active pharmaceutical ingredients (API). Bovine serum albumin (BSA) was chosen as model protein and vaccine, while sildenafil was the chosen drug to treat pulmonary artery hypertension and their effect on the particles characteristics was evaluated. All the produced formulations were characterized in relation to their morphology (Morphologi G3 and scanning electronic microscopy (SEM)), to their physical-chemical properties (X-ray diffraction (XRD, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR)) and aerodynamic performance using an in vitro aerosolization study – Andersen cascade impactor (ACI) - to obtain data such as the fine particle fraction (FPF) and the mass median aerodynamic diameter (MMAD). Furthermore, pharmacokinetic, biodegradability and biocompatibility tests were performed in order to verify the particle suitability for inhalation. The resulting particles showed aerodynamic diameters between the 3 and 5 μm, yields up to 58% and FPF percentages rounding the 30%. Taken as a whole, the produced microparticles do present the necessary requests to make them appropriate for pulmonary delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio (~13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 8l on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration below the limit of detection of the conventionally used microplate reader (i.e. 15 ng/μl) with 10 times lower solution volume (3 μl). The combination of the unique optical properties of gold nanoprobes with microfluidic platform resulted in sensitive and accurate sensor for single nucleotide polymorphism detection operating using small volumes of solutions and without the need for substrate functionalization or sophisticated instrumentation. Simultaneously, to enable on chip reagents mixing, a PDMS micromixer was developed and optimized for the highest efficiency, low pressure drop and short mixing length. The optimized device shows 80% of mixing efficiency at Re = 0.1 in 2.5 mm long mixer with the pressure drop of 6 Pa, satisfying requirements for the application in the microfluidic platform for DNA analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seismic events are a major factor to consider in structural design of buildings in many countries. With the purpose of saving lives, most of the design codes lead to structural solutions that withstand large seismic actions without collapsing, but without taking into account a possible usage of the structures after the earthquake. As a result, it is necessary to consider the time needed to repair/retrofit the damaged structures (i.e. the downtime) since this period of inactivity may result in huge financial implications for the occupants of the buildings. In order to minimise the damages and simplify repair operations, structural solutions with rocking systems and negligible residual displacements have been developed during the last two decades. Systems with precast concrete rocking walls were studied with the aim of investigat- ing suitable and convenient structural alternatives to minimise the damage in case of an earthquake. Experimental, numerical and analytical analyses on post-tensioned solutions, with and without energy dissipation devices, were carried out in this research. The energy dissipation devices were made from steel angles that were further developed during the research. Different solutions for these devices were experimentally tested under cyclic loading and the results are presented. Numerical and analytical work on steel angles was also carried out. Regarding the concrete rocking wall systems, two concrete rocking wall systems were studied: post-tensioned walls and post-tensioned walls with energy dissipation devices. In the latter, the solution was to fix them externally to the wall, allowing their easy replacement after an earthquake. It is shown that the dissipaters are a viable solution for use in precast concrete rocking wall systems. A building case study is presented. The comparison between a traditional monolithic system and a hybrid solution was carried out, allowing the evaluation of the efficiency of the solution that was developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phage display technology is a powerful platform for the generation of highly specific human monoclonal antibodies (Abs) with potential use in clinical applications. Moreover, this technique has also proven to be a reliable approach in identifying and validating new cancer-related targets. For scientific or medical applications, different types of Ab libraries can be constructed. The use of Fab Immune libraries allows the production of high quality and affinity antigen-specific Abs. In this work, two immune human phage display IgG Fab libraries were generated from the Ab repertoire of 16 breast cancer patients, in order to obtain a tool for the development of new therapeutic Abs for breast cancer, a condition that has great impact worldwide. The generated libraries are estimated to contain more than 108 independent clones and a diversity over 90%. Libraries validation was pursued by selection against BSA, a foreign and highly immunogenic protein, and HER2, a well established cancer target. Preliminary results suggested that phage pools with affinity for these antigens were selected and enriched. Individual clones were isolated, however, it was not possible to obtain enough data to further characterize them. Selection against the DLL1 protein was also performed, once it is a known ligand of the Notch pathway, whose deregulation is associated to breast cancer, making it an interesting target for the generation of function-blocking Abs. Selection resulted in the isolation of a clone with low affinity and Fab expression levels. The validation process was not completed and further effort will have to be put in this task in the future. Although immune libraries concept implies limited applicability, the library reported here has a wide range of use possibilities, since it was not restrained to a single antigen but instead thought to be used against any breast cancer associated target, thus being a valuable tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estuaries and other transitional waters are complex ecosystems critically important as nursery and shelter areas for organisms. Also, humans depend on estuaries for multiple socio-economical activities such as urbanism, tourism, heavy industry, (taking advantage of shipping), fisheries and aquaculture, the development of which led to strong historical pressures, with emphasis on pollution. The degradation of estuarine environmental quality implies ecologic, economic and social prejudice, hence the importance of evaluating environmental quality through the identification of stressors and impacts. The Sado Estuary (SW Portugal) holds the characteristics of industrialized estuaries, which results in multiple adverse impacts. Still, it has recently been considered moderately contaminated. In fact, many studies were conducted in the past few years, albeit scattered due to the absence of true biomonitoring programmes. As such, there is a need to integrate the information, in order to obtain a holistic perspective of the area able to assist management and decision-making. As such, a geographical information system (GIS) was created based on sediment contamination and biomarker data collected from a decade-long time-series of publications. Four impacted and a reference areas were identified, characterized by distinct sediment contamination patterns related to different hot spots and diffuse sources of toxicants. The potential risk of sediment-bound toxicants was determined by contrasting the levels of pollutants with available sediment quality guidelines, followed by their integration through the Sediment Quality guideline Quotient (SQG-Q). The SQG-Q estimates per toxicant or class was then subjected to georreferencing and statistical analyses between the five distinct areas and seasons. Biomarker responses were integrated through the Biomarkers Consistency Indice and georreferenced as well through GIS. Overall, in spite of the multiple biological traits surveyed, the biomarker data (from several organisms) are accordant with sediment contamination. The most impacted areas were the shipyard area and adjacent industrial belt, followed by urban and agricultural grounds. It is evident that the estuary, although globally moderately impacted, is very heterogeneous and affected by a cocktail of contaminants, especially metals and polycyclic aromatic hydrocarbon. Although elements (like copper, zinc and even arsenic) may originate from the geology of the hydrographic basin of the Sado River, the majority of the remaining contaminants results from human activities. The present work revealed that the estuary should be divided into distinct biogeographic units, in order to implement effective measures to safeguard environmental quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic Liquids (ILs) belong to a class of compounds with unusual properties: very low vapour pressure; high chemical and thermal stability and the ability to dissolve a wide range of substances. A new field in research is evaluating the possibility to use natural chiral biomolecules for the preparation of chiral ionic liquids (CILs). This important challenge in synthetic chemistry can open new avenues of research in order to avoid some problems related with the intrinsic biodegradability and toxicity associated to conventional ILs. The research work developed aimed for the synthesis of CILs, their characterization and possible applications, based on biological moieties used either as chiral cations or anions, depending on the synthetic manipulation of the derivatives. Overall, a total of 28 organic salts, including CILs were synthesized: 9 based on L-cysteine derivatives, 12 based on L-proline, 3 based on nucleosides and 4 based on nucleotides. All these new CILs were completely characterized and their chemical and physical properties were evaluated. Some CILs based on L-cysteine have been applied for discrimination processes, including resolution of racemates and as a chiral catalyst for asymmetric Aldol condensation. L-proline derived CILs were also studied as chiral catalysts for Michael reaction. In parallel, the interactions of macrocyclic oligosugars called cyclodextrins (CDs) with several ILs were studied. It was possible to improve the solubility of CDs in water and serum. Additionally, fatty acids and steroids showed an increase in water solubility when ILs-CDs systems were used. The development of efficient and selective ILs-CDs systems is indispensable to expand the range of their applications in host-guest interactions, drug delivery systems or catalytic reactions. Novel salts derived from nucleobases were used in order to enhance the fluorescence in aqueous solution. Additionally, preliminary studies regarding ethyl lactate as an alternative solvent for asymmetric organocatalysis were performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic Liquids (ILs) are class of compounds, which have become popular since the mid-1990s. Despite the fact that ILs are defined by one physical property (melting point), many of the potential applications are now related to their biological properties. The use of a drug as a liquid can avoid some problems related to polymorphism which can influence a drug´s solubility and thus its dosages. Also, the arrangement of the anion or cation with a specific drug might be relevant in order to: a) change the correspondent biopharmaceutical drug classification system; b) for the drug formulation process and c) the change the Active Pharmaceutical Ingredients’ (APIs). The main goal of this Thesis is the synthesis and study of physicochemical and biological properties of ILs as APIs from beta-lactam antibiotics (ampicillin, penicillin G and amoxicillin) and from the anti-fungal Amphotericin B. All the APIs used here were neutralized in a buffer appropriate hydroxide cations. The cation hydroxide was obtained on Amberlite resin (in the OH form) in order to exchange halides. The biological studies of these new compounds were made using techniques like the micro dilution and colorimetric methods. Overall a total of 19 new ILs were synthesised (6 ILs based on ampicillin, 4 ILs, based on amoxicillin, 6 ILs based on penicillin G and 4 ILs based on amphotericin B) and characterized by spectroscopic and analytical methods in order to confirm their structure and purity. The study of the biological properties of the synthesised ILs showed that some have antimicrobial activity against bacteria and yeast cells, even in resistant bacteria. Also this work allowed to show that ILs based on ampicillin could be used as anti-tumour agents. This proves that with a careful selection of the organic cation, it is possible to provoke important physico-chemical and biological alteration in the properties of ILs-APIs with great impact, having in mind their applications.