47 resultados para optical heterodyne detection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de Computadores, pela Universidade Nova de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation presents an approach aimed at three-dimensional perception’s obstacle detection on all-terrain robots. Given the huge amount of acquired information, the adversities such environments present to an autonomous system and the swiftness, thus required, from each of its navigation decisions, it becomes imperative that the 3-D perceptional system to be able to map obstacles and passageways in the most swift and detailed manner. In this document, a hybrid approach is presented bringing the best of several methods together, combining the lightness of lesser meticulous analyses with the detail brought by more thorough ones. Realizing the former, a terrain’s slope mapping system upon a low resolute volumetric representation of the surrounding occupancy. For the latter’s detailed evaluation, two novel metrics were conceived to discriminate the little depth discrepancies found in between range scanner’s beam distance measurements. The hybrid solution resulting from the conjunction of these two representations provides a reliable answer to traversability mapping and a robust discrimination of penetrable vegetation from that constituting real obstructions. Two distinct robotic platforms offered the possibility to test the hybrid approach on very different applications: a boat, under an European project, the ECHORD Riverwatch, and a terrestrial four-wheeled robot for a national project, the Introsys Robot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eradication of code smells is often pointed out as a way to improve readability, extensibility and design in existing software. However, code smell detection remains time consuming and error-prone, partly due to the inherent subjectivity of the detection processes presently available. In view of mitigating the subjectivity problem, this dissertation presents a tool that automates a technique for the detection and assessment of code smells in Java source code, developed as an Eclipse plugin. The technique is based upon a Binary Logistic Regression model that uses complexity metrics as independent variables and is calibrated by expert‟s knowledge. An overview of the technique is provided, the tool is described and validated by an example case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common type of cancer worldwide. The effectiveness of its treatment depends on early stage detection, as well as on the accuracy of its diagnosis. Recently, diagnosis techniques have been submitted to relevant breakthroughs with the upcoming of Magnetic Resonance Imaging, Ultrasound Sonograms and Positron Emission Tomography (PET) scans, among others. The work presented here is focused on studying the application of a PET system to a Positron Emission Mammography (PEM) system. A PET/PEM system works under the principle that a scintillating crystal will detect a gamma-ray pulse, originated at the cancerous cells, converting it into a correspondent visible light pulse. The latter must then be converted into an electrical current pulse by means of a Photo- -Sensitive Device (PSD). After the PSD there must be a Transimpedance Amplifier (TIA) in order to convert the current pulse into a suitable output voltage, in a time period lower than 40 ns. In this Thesis, the PSD considered is a Silicon Photo-Multiplier (SiPM). The usage of this recently developed type of PSD is impracticable with the conventional TIA topologies, as it will be proven. Therefore, the usage of the Regulated Common-Gate (RCG) topology will be studied in the design of the amplifier. There will be also presented two RCG variations, comprising a noise response improvement and differential operation of the circuit. The mentioned topology will also be tested in a Radio-Frequency front-end, showing the versatility of the RCG. A study comprising a low-voltage self-biasing feedback TIA will also be shown. The proposed circuits will be simulated with standard CMOS technology (UMC 130 nm), using a 1.2 V power supply. A power consumption of 0.34 mW with a signal-to-noise ratio of 43 dB was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio (~13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 8l on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration below the limit of detection of the conventionally used microplate reader (i.e. 15 ng/μl) with 10 times lower solution volume (3 μl). The combination of the unique optical properties of gold nanoprobes with microfluidic platform resulted in sensitive and accurate sensor for single nucleotide polymorphism detection operating using small volumes of solutions and without the need for substrate functionalization or sophisticated instrumentation. Simultaneously, to enable on chip reagents mixing, a PDMS micromixer was developed and optimized for the highest efficiency, low pressure drop and short mixing length. The optimized device shows 80% of mixing efficiency at Re = 0.1 in 2.5 mm long mixer with the pressure drop of 6 Pa, satisfying requirements for the application in the microfluidic platform for DNA analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part of this thesis will be published in the following: Gomes, B.C., Santos, B. 2015. Methods for studying microRNAs expression and their targets in formalin-fixed, paraffin-embedded (FFPE) breast cancer tissues. In Methods in Molecular Biology: Cancer Drug Resistance (Rueff, J. & Rodrigues, A.S. eds), Springer Protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro/nano wrinkled patterns on cross-linked urethane/urea polymeric flexible free standing films with two soft segments, polypropylene oxide and polybutadiene, can be induced by UV-irradiation. The ability to write/erase these 3D structures, in a controlled manner, is the main focus of this work. The imprinting of the wrinkled structures was accomplished by swelling in an appropriate solvent followed by drying the membranes after the cross-linking process and UV irradiation. The surface tailoring of the elastomeric membranes was imaged by optical microscopy, scanning electronic microscopy and by atomic force microscopy. To erase the wrinkled structures the elastomers were swollen. The swelling as well as the sol/gel fraction and the UV radiation were tuned in order to control the wrinkles characteristics. It was found that the wrinkles wavelength, in the order of microns (1±0,25μm), was stamped by the UV radiation intensity and exposure time while the wrinkles' amplitude, in the order of nanometers (150-450 nm), was highly dependent on the swelling and sol/gel fraction. A prototype for volatile organic compounds detection was developed taking advantage of the unique 3D micro/nano wrinkles features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this thesis was the development of a gold nanoparticle-based methodology for detection of DNA adducts as biomarkers, to try and overcome existing drawbacks in currently employed techniques. For this objective to be achieved, the experimental work was divided in three components: sample preparation, method of detection and development of a model for exposure to acrylamide. Different techniques were employed and combined for de-complexation and purification of DNA samples (including ultrasonic energy, nuclease digestion and chromatography), resulting in a complete protocol for sample treatment, prior to detection. The detection of alkylated nucleotides using gold nanoparticles was performed by two distinct methodologies: mass spectrometry and colorimetric detection. In mass spectrometry, gold nanoparticles were employed for laser desorption/ionisation instead of the organic matrix. Identification of nucleotides was possible by fingerprint, however no specific mass signals were denoted when using gold nanoparticles to analyse biological samples. An alternate method using the colorimetric properties of gold nanoparticles was employed for detection. This method inspired in the non-cross-linking assay allowed the identification of glycidamide-guanine adducts and DNA adducts generated in vitro. For the development of a model of exposure, two different aquatic organisms were studies: a goldfish and a mussel. Organisms were exposed to waterborne acrylamide, after which mortality was recorded and effect concentrations were estimated. In goldfish, both genotoxicity and metabolic alterations were assessed and revealed dose-effect relationships of acrylamide. Histopathological alterations were verified primarily in pancreatic cells, but also in hepatocytes. Mussels showed higher effect concentrations than goldfish. Biomarkers of oxidative stress, biotransformation and neurotoxicity were analysed after prolonged exposure, showing mild oxidative stress in mussel cells, and induction of enzymes involved in detoxification of oxygen radicals. A qualitative histopathological screening revealed gonadotoxicity in female mussels, which may present some risk to population equilibrium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyses financial data using the result characterization of a self-organized neural network model. The goal was prototyping a tool that may help an economist or a market analyst to analyse stock market series. To reach this goal, the tool shows economic dependencies and statistics measures over stock market series. The neural network SOM (self-organizing maps) model was used to ex-tract behavioural patterns of the data analysed. Based on this model, it was de-veloped an application to analyse financial data. This application uses a portfo-lio of correlated markets or inverse-correlated markets as input. After the anal-ysis with SOM, the result is represented by micro clusters that are organized by its behaviour tendency. During the study appeared the need of a better analysis for SOM algo-rithm results. This problem was solved with a cluster solution technique, which groups the micro clusters from SOM U-Matrix analyses. The study showed that the correlation and inverse-correlation markets projects multiple clusters of data. These clusters represent multiple trend states that may be useful for technical professionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transimpedance amplifier (TIA) is used, in radiation detectors like the positron emission tomography(PET), to transform the current pulse produced by a photo-sensitive device into an output voltage pulse with a desired amplitude and shape. The TIA must have the lowest noise possible to maximize the output. To achieve a low noise, a circuit topology is proposed where an auxiliary path is added to the feedback TIA input, In this auxiliary path a differential transconductance block is used to transform the node voltage in to a current, this current is then converted to a voltage pulse by a second feedback TIA complementary to the first one, with the same amplitude but 180º out of phase with the first feedback TIA. With this circuit the input signal of the TIA appears differential at the output, this is used to try an reduced the circuit noise. The circuit is tested with two different devices, the Avalanche photodiodes (APD) and the Silicon photomultiplier (SIPMs). From the simulations we find that when using s SIPM with Rx=20kΩ and Cx=50fF the signal to noise ratio is increased from 59 when using only one feedback TIA to 68.3 when we use an auxiliary path in conjunction with the feedback TIA. This values where achieved with a total power consumption of 4.82mv. While the signal to noise ratio in the case of the SIPM is increased with some penalty in power consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is one of the first reports of digital microfluidics on paper and the first in which the chip’s circuit was screen printed unto the paper. The use of the screen printing technique, being a low cost and fast method for electrodes deposition, makes the all chip processing much more aligned with the low cost choice of paper as a substrate. Functioning chips were developed that were capable of working at as low as 50 V, performing all the digital microfluidics operations: movement, dispensing, merging and splitting of the droplets. Silver ink electrodes were screen printed unto paper substrates, covered by Parylene-C (through vapor deposition) as dielectric and Teflon AF 1600 (through spin coating) as hydrophobic layer. The morphology of different paper substrates, silver inks (with different annealing conditions) and Parylene deposition conditions were studied by optical microscopy, AFM, SEM and 3D profilometry. Resolution tests for the printing process and electrical characterization of the silver electrodes were also made. As a showcase of the applications potential of these chips as a biosensing device, a colorimetric peroxidase detection test was successfully done on chip, using 200 nL to 350 nL droplets dispensed from 1 μL drops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the complexity of markets and the dynamicity of systems evolve, the need for interoperable systems capable of strengthening enterprise communication effectiveness increases. This is particularly significant when it comes to collaborative enterprise networks, like manufacturing supply chains, where several companies work, communicate, and depend on each other, in order to achieve a specific goal. Once interoperability is achieved, that is once all network parties are able to communicate with and understand each other, organisations are able to exchange information along a stable environment that follows agreed laws. However, as markets adapt to new requirements and demands, an evolutionary behaviour is triggered giving space to interoperability problems, thus disrupting the sustainability of interoperability and raising the need to develop monitoring activities capable of detecting and preventing unexpected behaviour. This work seeks to contribute to the development of monitoring techniques for interoperable SOA-based enterprise networks. It focuses on the automatic detection of harmonisation breaking events during real-time communications, and strives to develop and propose a methodological approach to handle these disruptions with minimal or no human intervention, hence providing existing service-based networks with the ability to detect and promptly react to interoperability issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work described in this thesis was performed at the Laboratory for Intense Lasers (L2I) of Instituto Superior Técnico, University of Lisbon (IST-UL). Its main contribution consists in the feasibility study of the broadband dispersive stages for an optical parametric chirped pulse amplifier based on the nonlinear crystal yttrium calcium oxi-borate (YCOB). In particular, the main goal of this work consisted in the characterization and implementation of the several optical devices involved in pulse expansion and compression of the amplified pulses to durations of the order of a few optical cycles (20 fs). This type of laser systems find application in fields such as medicine, telecommunications and machining, which require high energy, ultrashort (sub-100 fs) pulses. The main challenges consisted in the preliminary study of the performance of the broadband amplifier, which is essential for successfully handling pulses with bandwidths exceeding 100 nm when amplified from the μJ to 20 mJ per pulse. In general, the control, manipulation and characterization of optical phenomena on the scale of a few tens of fs and powers that can reach the PW level are extremely difficult and challenging due to the complexity of the phenomena of radiation-matter interaction and their nonlinearities, observed at this time scale and power level. For this purpose the main dispersive components were characterized in detail, specifically addressing the demonstration of pulse expansion and compression. The tested bandwidths are narrower than the final ones, in order to confirm the parameters of these elements and predict the performance for the broadband pulses. The work performed led to additional tasks such as a detailed characterization of laser oscillator seeding the laser chain and the detection and cancelling of additional sources of dispersion.