35 resultados para movement optimal synthesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an application of an Artificial Neural Network (ANN) to the prediction of stock market direction in the US. Using a multilayer perceptron neural network and a backpropagation algorithm for the training process, the model aims at learning the hidden patterns in the daily movement of the S&P500 to correctly identify if the market will be in a Trend Following or Mean Reversion behavior. The ANN is able to produce a successful investment strategy which outperforms the buy and hold strategy, but presents instability in its overall results which compromises its practical application in real life investment decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aziridines, a class of organic compounds containing a three membered heterocycle with a nitrogen atom, are extremely valuable molecules in organic and medicinal chemistry. They are frequently used as versatile precursors in the synthesis of natural products, and many biologically active molecules possess the aziridine moiety. The reactivity of aziridines has been studied, for example, in ring-opening reactions with thiols. However, not much interest seems to be given to reactions of aziridines in aqueous media, despite the numberless advantages of using water as solvent in organic chemistry. The nucleophilic ring-opening reaction of aziridines in aqueous media was here explored. Following the Kaplan aziridine synthetic methodology, in which pyridinium salts undergo a photochemical transformation to give bicyclic vinyl aziridines, new aziridines were synthetized. Their nucleophilic ring-opening reaction in water under physiological conditions was investigated and a range of sulphur, nitrogen, carbon and oxygen nucleophiles tested. Thiols, anilines and azide proved to be good nucleophiles to react with the aziridines, giving the ring-opening product in moderate to good yields. The best results were obtained with thiols, more specifically with cysteine-derived nucleophiles. Preliminary results show that these bicyclic vinyl aziridines can modify calcitonin, a peptide containing two cysteine amino acids residues, grating them the potential to be used in bioconjugation as ligands to cysteine-containing proteins, or even as enzyme inhibitors of, for example, cysteine proteases. Additionally, exploratory investigations suggest that the separation of both enantiomers of the bicyclic vinyl aziridine can be performed by taking advantage of an enzymatic methodology for the resolution of racemic secondary alcohols. Both enantiomers would be highly valuable as precursors in the synthesis of enantiomerically pure molecules, as no other method is currently reported for their separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to study the self-assembly process of C3-symmetric molecules. To accomplish this objective 1,3,5 – benzentricarboxamides (BTA) derivatives were obtained. Five C3-symmetric molecules were synthesized in moderate to good yields (39-72%) using azo-benzene, aniline, benzylamine, tryptophan and tyrosine. The aggregation behavior of the BTA derivatives was probed with 1H-NMR spectroscopy, 1H-1H 2D Nuclear Overhauser Effect Spectroscopy (NOESY) and Diffusion Ordered Spectroscopy (DOSY). These experiments allowed to study the influence of H-bonding groups, aromatic rings, unsaturated bonds and the overall geometry in the molecular self-assembly associated with the different structural patterns present on these molecules. The stacking and large molecule behavior where observed in BTA 1, aniline derivative, BTA 4, tyrosine derivative or BTA 5, tryptophan derivative, with several of those discussed functional groups such as unsaturated bonds and H-bonding groups. BTA 5 was used in a few preliminary interaction studies with glucose and ammonium chloride showing interaction with the ammonium ion.