39 resultados para incident duration modelling
Resumo:
Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
This work aims to identify and rank a set of Lean and Green practices and supply chain performance measures on which managers should focus to achieve competitiveness and improve the performance of automotive supply chains. The identification of the contextual relationships among the suggested practices and measures, was performed through literature review. Their ranking was done by interviews with professionals from the automotive industry and academics with wide knowledge on the subject. The methodology of interpretive structural modelling (ISM) is a useful methodology to identify inter relationships among Lean and Green practices and supply chain performance measures and to support the evaluation of automotive supply chain performance. Using the ISM methodology, the variables under study were clustered according to their driving power and dependence power. The ISM methodology was proposed to be used in this work. The model intends to provide a better understanding of the variables that have more influence (driving variables), the others and those which are most influenced (dependent variables) by others. The information provided by this model is strategic for managers who can use it to identify which variables they should focus on in order to have competitive supply chains.
Resumo:
Transport is an essential sector in modern societies. It connects economic sectors and industries. Next to its contribution to economic development and social interconnection, it also causes adverse impacts on the environment and results in health hazards. Transport is a major source of ground air pollution, especially in urban areas, and therefore contributing to the health problems, such as cardiovascular and respiratory diseases, cancer, and physical injuries. This thesis presents the results of a health risk assessment that quantifies the mortality and the diseases associated with particulate matter pollution resulting from urban road transport in Hai Phong City, Vietnam. The focus is on the integration of modelling and GIS approaches in the exposure analysis to increase the accuracy of the assessment and to produce timely and consistent assessment results. The modelling was done to estimate traffic conditions and concentrations of particulate matters based on geo-references data. A simplified health risk assessment was also done for Ha Noi based on monitoring data that allows a comparison of the results between the two cases. The results of the case studies show that health risk assessment based on modelling data can provide a much more detail results and allows assessing health impacts of different mobility development options at micro level. The use of modeling and GIS as a common platform for the integration of different assessments (environmental, health, socio-economic, etc.) provides various strengths, especially in capitalising on the available data stored in different units and forms and allows handling large amount of data. The use of models and GIS in a health risk assessment, from a decision making point of view, can reduce the processing/waiting time while providing a view at different scales: from micro scale (sections of a city) to a macro scale. It also helps visualising the links between air quality and health outcomes which is useful discussing different development options. However, a number of improvements can be made to further advance the integration. An improved integration programme of the data will facilitate the application of integrated models in policy-making. Data on mobility survey, environmental monitoring and measuring must be standardised and legalised. Various traffic models, together with emission and dispersion models, should be tested and more attention should be given to their uncertainty and sensitivity
Resumo:
Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/64337/2009 ; projects PTDC/ECM/70652/2006, PTDC/ECM/117660/2010 and RECI/ECM-HID/0371/2012
Resumo:
Digital Businesses have become a major driver for economic growth and have seen an explosion of new startups. At the same time, it also includes mature enterprises that have become global giants in a relatively short period of time. Digital Businesses have unique characteristics that make the running and management of a Digital Business much different from traditional offline businesses. Digital businesses respond to online users who are highly interconnected and networked. This enables a rapid flow of word of mouth, at a pace far greater than ever envisioned when dealing with traditional products and services. The relatively low cost of incremental user addition has led to a variety of innovation in pricing of digital products, including various forms of free and freemium pricing models. This thesis explores the unique characteristics and complexities of Digital Businesses and its implications on the design of Digital Business Models and Revenue Models. The thesis proposes an Agent Based Modeling Framework that can be used to develop Simulation Models that simulate the complex dynamics of Digital Businesses and the user interactions between users of a digital product. Such Simulation models can be used for a variety of purposes such as simple forecasting, analysing the impact of market disturbances, analysing the impact of changes in pricing models and optimising the pricing for maximum revenue generation or a balance between growth in usage and revenue generation. These models can be developed for a mature enterprise with a large historical record of user growth rate as well as for early stage enterprises without much historical data. Through three case studies, the thesis demonstrates the applicability of the Framework and its potential applications.
Resumo:
With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.
Resumo:
This paper aims to provide a model that allows BPI to measure the credit risk, through its rating scale, of the subsidiaries included in the corporate groups who are their clients. This model should be simple enough to be applied in practice, accurate, and must give consistent results in comparison to what have been the ratings given by the bank. The model proposed includes operational, strategic, and financial factors and ends up giving one of three results: no support, partial support, or full support from the holding to the subsidiary, and each of them translates in adjustments in each subsidiary’s credit rating. As it would be expectable, most of the subsidiaries should have the same credit rating of its parent company.
Resumo:
Forgiveness has been subject of interest, mainly in the psychology fields of study. Relatively to the organizational context, this topic has been somehow put aside and settled as something that is purely an intra-individual phenomenon which organizations cannot force, or even stimulate. As conflicts are common within organizations and being often difficult to overcome, eyes have turned into the role forgiveness might take in this scenario. Despite forgiveness being accepted as an intrapersonal decision and a result of predisposition as it is a result of education and culture. This study, as some already done, refuses to accept forgiveness as an unchangeable behavior that cannot be manipulated or induced by managers or by organizational context. Therefore, offering a set of incidents as well as their classification, that have been identified by individuals performing different types organizational roles in different organization which is believed as being a genuine way of delivering to the reader a set of actions and behaviors that if taken, may incentivize or inhibit forgiveness.