33 resultados para genetic strains
Resumo:
Mycobacterium avium Complex (MAC) comprises microorganisms that affect a wide range of animals including humans. The most relevant are Mycobacterium avium subspecies hominissuis (Mah) with a high impact on public health affecting mainly immunocompromised individuals and Mycobacterium avium subspecies paratuberculosis (Map) causing paratuberculosis in animals with a high economic impact worldwide. In this work, we characterized 28 human and 67 porcine Mah isolates and evaluated the relationship among them by Multiple-Locus Variable number tandem repeat Analysis (MLVA). We concluded that Mah population presented a high genetic diversity and no correlations were inferred based on geographical origin, host or biological sample. For the first time in Portugal Map strains, from asymptomatic bovine faecal samples were isolated highlighting the need of more reliable and rapid diagnostic methods for Map direct detection. Therefore, we developed an IS900 nested real time PCR with high sensitivity and specificity associated with optimized DNA extraction methodologies for faecal and milk samples. We detected 83% of 155 faecal samples from goats, cattle and sheep, and 26% of 98 milk samples from cattle, positive for Map IS900 nested real time PCR. A novel SNPs (single nucleotide polymorphisms) assay to Map characterization based on a Whole Genome Sequencing analysis was developed to elucidate the genetic relationship between strains. Based on sequential detection of 14 SNPs and on a decision tree we were able to differentiate 14 phylogenetic groups with a higher discriminatory power compared to other typing methods. A pigmented Map strain was isolated and characterized evidencing for the first time to our knowledge the existence of pigmented Type C strains. With this work, we intended to improve the ante mortem direct molecular detection of Map, to conscientiously aware for the existence of Map animal infections widespread in Portugal and to contribute to the improvement of Map and Mah epidemiological studies.
Resumo:
Ship tracking systems allow Maritime Organizations that are concerned with the Safety at Sea to obtain information on the current location and route of merchant vessels. Thanks to Space technology in recent years the geographical coverage of the ship tracking platforms has increased significantly, from radar based near-shore traffic monitoring towards a worldwide picture of the maritime traffic situation. The long-range tracking systems currently in operations allow the storage of ship position data over many years: a valuable source of knowledge about the shipping routes between different ocean regions. The outcome of this Master project is a software prototype for the estimation of the most operated shipping route between any two geographical locations. The analysis is based on the historical ship positions acquired with long-range tracking systems. The proposed approach makes use of a Genetic Algorithm applied on a training set of relevant ship positions extracted from the long-term storage tracking database of the European Maritime Safety Agency (EMSA). The analysis of some representative shipping routes is presented and the quality of the results and their operational applications are assessed by a Maritime Safety expert.
Resumo:
Recaí sob a responsabilidade da Marinha Portuguesa a gestão da Zona Económica Exclusiva de Portugal, assegurando a sua segurança da mesma face a atividades criminosas. Para auxiliar a tarefa, é utilizado o sistema Oversee, utilizado para monitorizar a posição de todas as embarcações presentes na área afeta, permitindo a rápida intervenção da Marinha Portuguesa quando e onde necessário. No entanto, o sistema necessita de transmissões periódicas constantes originadas nas embarcações para operar corretamente – casos as transmissões sejam interrompidas, deliberada ou acidentalmente, o sistema deixa de conseguir localizar embarcações, dificultando a intervenção da Marinha. A fim de colmatar esta falha, é proposto adicionar ao sistema Oversee a capacidade de prever as posições futuras de uma embarcação com base no seu trajeto até à cessação das transmissões. Tendo em conta os grandes volumes de dados gerados pelo sistema (históricos de posições), a área de Inteligência Artificial apresenta uma possível solução para este problema. Atendendo às necessidades de resposta rápida do problema abordado, o algoritmo de Geometric Semantic Genetic Programming baseado em referências de Vanneschi et al. apresenta-se como uma possível solução, tendo já produzido bons resultados em problemas semelhantes. O presente trabalho de tese pretende integrar o algoritmo de Geometric Semantic Genetic Programming desenvolvido com o sistema Oversee, a fim de lhe conceder capacidades preditivas. Adicionalmente, será realizado um processo de análise de desempenho a fim de determinar qual a ideal parametrização do algoritmo. Pretende-se com esta tese fornecer à Marinha Portuguesa uma ferramenta capaz de auxiliar o controlo da Zona Económica Exclusiva Portuguesa, permitindo a correta intervenção da Marinha em casos onde o atual sistema não conseguiria determinar a correta posição da embarcação em questão.