109 resultados para Redes neuronais (Neurobiologia)
Resumo:
A capacidade de prever precisamente a produção de energia renovável é extremamente relevante tanto do ponto de vista económico como para controlo da estabilidade da rede elétrica. Para tal, é necessário realizar uma previsão das condições meteorológicas adjacentes à produção de energia a partir de fontes de energia renovável. Vários modelos de previsão têm sido utilizados para este fim, desde modelos atmosféricos a modelos estatísticos, onde se destacam métodos como Redes Neuronais Artificiais ou a Metodologia de Box & Jenkins. Lidar com dados meteo-rológicos pode revelar algumas complicações devido à possível instabilidade das medições, com-plicando o desenvolvimento de um modelo de previsão adequado. Neste trabalho pretende-se realizar a previsão de produção a partir de uma instalação fotovoltaica e um gerador eólico através do uso da Metodologia de Box & Jenkins para desenvolver um modelo capaz de realizar a previsão das condições meteorológicas para diferentes horizontes temporais medidos no topo do edifício do Departamento de Engenharia Eletrotécnica (DEE) da Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), e usando esses valores para calcular a produção de energia. Os resultados obtidos revelaram um bom desempenho quando comparados os resultados previstos com os resultados reais para o mesmo período de tempo, garantindo que podem ser utilizados para calcular a previsão de potência produzida através das instalações presentes no local e encorajando novos estudos no tema.
Resumo:
Data Mining surge, hoje em dia, como uma ferramenta importante e crucial para o sucesso de um negócio. O considerável volume de dados que atualmente se encontra disponível, por si só, não traz valor acrescentado. No entanto, as ferramentas de Data Mining, capazes de transformar dados e mais dados em conhecimento, vêm colmatar esta lacuna, constituindo, assim, um trunfo que ninguém quer perder. O presente trabalho foca-se na utilização das técnicas de Data Mining no âmbito da atividade bancária, mais concretamente na sua atividade de telemarketing. Neste trabalho são aplicados catorze algoritmos a uma base de dados proveniente do call center de um banco português, resultante de uma campanha para a angariação de clientes para depósitos a prazo com taxas de juro favoráveis. Os catorze algoritmos aplicados no caso prático deste projeto podem ser agrupados em sete grupos: Árvores de Decisão, Redes Neuronais, Support Vector Machine, Voted Perceptron, métodos Ensemble, aprendizagem Bayesiana e Regressões. De forma a beneficiar, ainda mais, do que a área de Data Mining tem para oferecer, este trabalho incide ainda sobre o redimensionamento da base de dados em questão, através da aplicação de duas estratégias de seleção de atributos: Best First e Genetic Search. Um dos objetivos deste trabalho prende-se com a comparação dos resultados obtidos com os resultados presentes no estudo dos autores Sérgio Moro, Raul Laureano e Paulo Cortez (Sérgio Moro, Laureano, & Cortez, 2011). Adicionalmente, pretende-se identificar as variáveis mais relevantes aquando da identificação do potencial cliente deste produto financeiro. Como principais conclusões, depreende-se que os resultados obtidos são comparáveis com os resultados publicados pelos autores mencionados, sendo os mesmos de qualidade e consistentes. O algoritmo Bagging é o que apresenta melhores resultados e a variável referente à duração da chamada telefónica é a que mais influencia o sucesso de campanhas similares.
Resumo:
A estrutura temporal das taxas de juro, também conhecida por yield curve ou curva de rendimentos define a relação entre as taxas de juros e o prazo de vencimento (ou maturidades) dos investimentos feitos. Assim, o desenvolvimento de modelos que possibilitem a obtenção de previsões precisas sobre a estrutura temporal das taxas de juro e que permitam estudar a dinâmica da evolução das taxas de juro é de crucial importância em diversas áreas de financiamento. Neste estudo investigou-se a performance de diferentes métodos de previsão para obter a estrutura temporal das taxas de juro da Zona Euro, considerando o período entre 2009 e 2015. Em termos mais específicos, foi analisada a capacidade preditiva do modelo de Nelson-Siegel & Svensson assumindo que os parâmetros resultantes da estimação da especificação paramétrica podem ser modelizados através de métodos de séries temporais univariados (modelos ARIMA, Random walk) e multivariados (modelos VAR) e Redes Neuronais Artificiais (RNA) individuais e conjuntas. Os resultados deste estudo mostram que (i) as RNA com a previsão dos parâmetros em simultâneo exibem os valores de erro mais baixos para as maturidades de curto e médio prazo (3 meses a 5 anos); (ii) As RNAs individuais são melhores para prever as taxas de juro nas maturidades compreendidas entre os 7 e os 10 anos, e que (iii) para as maturidades de longo e muito longo prazo (15 e 30 anos respetivamente) deverá ser escolhido o modelo VAR(1). Estes resultados são robustos e consistentes para todos os horizontes de previsão analisados (1,2 e 3 meses). Contudo, no período analisado nenhum dos modelos testados apresenta valores de erro inferiores aos obtidos com o modelo Random Walk.
Resumo:
Tese de doutoramento em Ciências da Educação
Resumo:
Tese de doutoramento em Engenharia Sanitária
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Engenharia Electrotécnica, especialidade de Sistemas Digitais, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
A Geografia e o seu estudo estão a mudar. A nova sociedade de informação disponibiliza outros meios e outros métodos para conseguir atingir as nossas metas. As tecnologias de informação podem interagir com a Geografia, as auto-estradas de informação, os satélites, os telemóveis e o poder da internet, são alguns exemplos que estão a mudar os sistemas de organização espacial das sociedades, criando novas oportunidades e campos de conhecimento. Para difundir essas ideias junto da comunidade, torna-se necessário desenvolver redes educacionais, facilitando não só o intercâmbio dentro do país, mas encorajando também a cooperação em projectos internacionais. Poderão as redes de Geografia alterar o futuro da Geografia como ciência ?
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Trabalho realizado sob orientação do Prof. António Brandão Moniz para a disciplina “Factores Sociais da Inovação” do Mestrado Engenharia Informática realizado na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (Portugal).
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Sanitária
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores