38 resultados para Previsão de cargas elétricas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com o passar do tempo, a aposta em energias renováveis tem vindo a aumentar. De forma a prever o que se irá produzir com os sistemas de energias renováveis, é necessário desenvolver modelos preditivos, específicos para cada situação. No Departamento de Engenharia Electrotécnica (DEE) da Faculdade de Ciências e Tecnologia (FCT) encontra-se um sistema fotovoltaico e um sistema eólico em funcionamento, e assim de forma a ter uma estimativa da produção de energia de ambos os sistemas, propôs-se nesta dissertação desenvolver um modelo de previsão de produção de energia eléctrica para os sistemas fotovoltaico e eólico. Para desenvolver o modelo preditivo pretendido, em primeiro lugar recolheram-se os dados meteorológicos e de produção de energia no ano 2013 e realizou-se um processamento desses mesmos dados, com a linguagem de programação Java, uma vez que não se encontravam na melhor forma para serem analisados e utilizados para construção do modelo. Após realizado o processamento, como os dados do ano de 2014 existentes não eram suficientes para testar o modelo depois de ser desenvolvido, geraram-se dados meteorológicos para 2014 tendo em consideração os dados de 2013. Para os dados de energia produzida, criaram-se superfícies de aproximação a partir dos dados de 2013, e utilizando os dados meteorológicos gerados para 2014 obteve-se uma aproximação da energia produzida. Tendo todos os dados necessários para a construção do modelo e posteriormente para o testar, iniciouse o pré-processamento dos dados com recurso a filtros e à Análise em Componentes Principais. Por fim, construíram-se duas estruturas diferentes de Redes Neuronais Artificiais de modo a verificar qual se adequa melhor aos sistemas existentes. Para validar o modelo construído com base em redes neuronais testou-se o modelo com os dados de 2014, diferentes dos utilizados na sua construção. Com os resultados obtidos concluiu-se que o filtro mais adequado para o pré-processamento é o filtro Savitzky-Golay e a estrutura do modelo mais indicada para o pretendido será a Rede Neuronal Artificial (RNA) com apenas uma camada intermédia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As tarefas de movimentação manual de cargas estão presentes na maioria das atividades económicas e têm sido referidas como a uma das principais causas de lombalgias na população trabalhadora. Na tentativa de preservar a segurança e a saúde dos trabalhadores, têm sido desenvolvidas diversas metodologias para realizar a análise e a avaliação do risco na movimentação manual de cargas. As diferentes metodologias divergem nos tipos de tarefas que avaliam, nos inputs e outputs que consideram, nas abordagens que utilizam e no modo como se interpretam os resultados. Por outro lado, a utilização de várias metodologias é útil na validação do nível de risco encontrado e na sugestão de medidas de intervenção ergonómica com o objetivo de eliminar, ou pelo menos reduzir, esse risco. Neste estudo pretendeu-se analisar e avaliar o risco associado à realização de tarefas de movimentação manual de cargas desenvolvidas em dois postos de trabalho, através da aplicação de seis metodologias. Devido ao facto dos trabalhadores dos postos de trabalho analisados terem características pessoais e métodos de trabalho diferentes, numa primeira fase a avaliação do risco foi realizada de forma individual, de modo a quantificar a exposição individual ao risco. Posteriormente, foi realizada uma análise comparativa dos resultados obtidos através das metodologias, com o objetivo de verificar se existiam diferenças significativas entre elas. A partir dos resultados obtidos através das metodologias foram sugeridas medidas de intervenção ergonómica, assim como quantificado o seu efeito na redução do risco. O desenvolvimento deste estudo também permitiu identificar algumas vantagens e desvantagens das metodologias selecionadas que, por sua vez, foram recomendadas para diferentes situações e, ou, propósitos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A capacidade de prever precisamente a produção de energia renovável é extremamente relevante tanto do ponto de vista económico como para controlo da estabilidade da rede elétrica. Para tal, é necessário realizar uma previsão das condições meteorológicas adjacentes à produção de energia a partir de fontes de energia renovável. Vários modelos de previsão têm sido utilizados para este fim, desde modelos atmosféricos a modelos estatísticos, onde se destacam métodos como Redes Neuronais Artificiais ou a Metodologia de Box & Jenkins. Lidar com dados meteo-rológicos pode revelar algumas complicações devido à possível instabilidade das medições, com-plicando o desenvolvimento de um modelo de previsão adequado. Neste trabalho pretende-se realizar a previsão de produção a partir de uma instalação fotovoltaica e um gerador eólico através do uso da Metodologia de Box & Jenkins para desenvolver um modelo capaz de realizar a previsão das condições meteorológicas para diferentes horizontes temporais medidos no topo do edifício do Departamento de Engenharia Eletrotécnica (DEE) da Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), e usando esses valores para calcular a produção de energia. Os resultados obtidos revelaram um bom desempenho quando comparados os resultados previstos com os resultados reais para o mesmo período de tempo, garantindo que podem ser utilizados para calcular a previsão de potência produzida através das instalações presentes no local e encorajando novos estudos no tema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os modelos de previsão da degradação dos pavimentos são um elemento-chave para os sistemas de gestão dos pavimentos sendo utilizados para prever a evolução das suas condições de circulação. O presente trabalho tem como objetivo estabelecer um modelo de previsão da evolução do indice de irregularidade longitudinal (IRI), principal indicador da qualidade funcional de um pavimento. Para tal, foram utilizados dados da base de dados da empresa Infraestrutruras de Portugal (IP). Esta mantém um programa de monitorização da rede com o objetivo de controlar a qualidade de serviço e gerir de forma consciente os recursos disponíveis. O modelo HDM-4 foi implementado em código do programa Matlab com o objetivo de apoiar este estudo. Primeiro, procedeu-se à avaliação da forma com que os parâmetros do modelo HDM-4 atuam sobre o valor do IRI no modelo HDM-4. Posteriormente, procurou-se ajustar os resultados obtidos efetuando calibrações, com o intuito de minimizar o erro entre os valores calculados e os valores medidos pela IP. Concluiu-se que é possível estabelecer modelos com base no modelo HDM-4, em pavimentos flexíveis, ajustados à rede rodoviária nacional. No entanto, para serem incluidos fatores que deveriam ser contabilizados no modelo, deverão ser realizadas algumas alterações na base de dados a utilizar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cada vez mais a preocupação ambiental tem ditado o rumo das abordagens escolhidas nas mais variadas áreas, quer pela redução de desperdícios, quer pelo aumento da eficiência dos mais diversos processos. Quando olhamos para os consumos energéticos a nível mundial os edifícios são responsáveis por uma grande fatia destes consumos fazendo deles um dos grande ponto de interesse para implementação de sistemas que visem diminuir os consumos, permitindo assim tentar alcançar um equilíbrio sustentável entre o meio ambiente e o nosso conforto. A variável humana tem-se mostrado cada vez mais importante no desenvolvimento de ferramentas que venham permitir alcançar este objetivo, quer por via de reduções nos consumos através da remoção dos fatores de desperdício de energia, quer pelo aumento de eficiência dos sistemas utilizados nas habitações, desde a iluminação à climatização. É então importante poder ter formas de conhecer qual o comportamento humano no edifício para que possam ser criadas abordagens cada vez mais eficientes e que possam contar com melhores variáveis de entrada aumentado assim, ainda mais o seu desempenho. Na presente dissertação será feito o estudo da validade do uso do dióxido de carbono como variável de inferência para o nível de ocupação das várias divisões de um edifício de habitação. Para tal implementou-se um sistema de análise dos valores de dióxido de carbono da habitação através de módulos sem fios colocados em locais estratégicos que fornecerão informação ao algoritmo para que possa ser criado um mapa de ocupação. O dióxido de carbono mostrou-se capaz de fornecer informação da ocupação no entanto apresentando uma incerteza moderada devido a fatores como os deslocamentos de ar na habitação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A representatividade do número de reinternamento hospitalares, no quadro dos custos hospitalares, deverá ser encarada como um indicador de qualidade nos serviços prestados e um objeto de estudo no que diz respeito à forma como estão a ser geridos esses serviços. Caracterizar os utentes com maior propensão a um reinternamento e identificar os fatores de risco que lhe estão associados torna-se, pois, pertinente, pois só assim, se poderá, no futuro, desenvolver uma atuação proativa com o objetivo primeiro de uma redução de custos sem colocar, no entanto, em causa a qualidade dos serviços que as entidades hospitalares prestam aos seus utentes. O objetivo deste estudo consiste em criar um modelo preditivo, com base em árvores de decisão, que auxilie a identificar os fatores de risco dos reinternamentos em 30 dias relativos ao Grupos de Diagnóstico Homogéneo (GDH) 127 - Insuficiência cardíaca e/ou choque, de forma a auxiliar as entidades prestadoras de cuidados de saúde a tomar decisões e atuar atempadamente sobre situações críticas. O estudo é suportado pela base de dados dos Grupos de Diagnóstico Homogéneos, a qual, possui informação sobre o utente e sobre o seu processo de internamento, nomeadamente, o diagnóstico principal, os diagnósticos secundários, os procedimentos realizados, a idade e sexo do utente e o destino após a alta. Pode concluir-se após estudo, que as taxas de reinternamentos têm vindo a aumentar nos últimos anos, que a população idosa insere-se no universo sujeito ao maior risco de reinternamento e que além do diagnóstico principal, a existência de comorbidades representa um papel importante no incremento do risco, nomeadamente, quando são diagnosticadas em simultâneo doenças renais, diabetes mellitus ou doenças isquémicas crónicas do coração (NCOP).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data Mining surge, hoje em dia, como uma ferramenta importante e crucial para o sucesso de um negócio. O considerável volume de dados que atualmente se encontra disponível, por si só, não traz valor acrescentado. No entanto, as ferramentas de Data Mining, capazes de transformar dados e mais dados em conhecimento, vêm colmatar esta lacuna, constituindo, assim, um trunfo que ninguém quer perder. O presente trabalho foca-se na utilização das técnicas de Data Mining no âmbito da atividade bancária, mais concretamente na sua atividade de telemarketing. Neste trabalho são aplicados catorze algoritmos a uma base de dados proveniente do call center de um banco português, resultante de uma campanha para a angariação de clientes para depósitos a prazo com taxas de juro favoráveis. Os catorze algoritmos aplicados no caso prático deste projeto podem ser agrupados em sete grupos: Árvores de Decisão, Redes Neuronais, Support Vector Machine, Voted Perceptron, métodos Ensemble, aprendizagem Bayesiana e Regressões. De forma a beneficiar, ainda mais, do que a área de Data Mining tem para oferecer, este trabalho incide ainda sobre o redimensionamento da base de dados em questão, através da aplicação de duas estratégias de seleção de atributos: Best First e Genetic Search. Um dos objetivos deste trabalho prende-se com a comparação dos resultados obtidos com os resultados presentes no estudo dos autores Sérgio Moro, Raul Laureano e Paulo Cortez (Sérgio Moro, Laureano, & Cortez, 2011). Adicionalmente, pretende-se identificar as variáveis mais relevantes aquando da identificação do potencial cliente deste produto financeiro. Como principais conclusões, depreende-se que os resultados obtidos são comparáveis com os resultados publicados pelos autores mencionados, sendo os mesmos de qualidade e consistentes. O algoritmo Bagging é o que apresenta melhores resultados e a variável referente à duração da chamada telefónica é a que mais influencia o sucesso de campanhas similares.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A estrutura temporal das taxas de juro, também conhecida por yield curve ou curva de rendimentos define a relação entre as taxas de juros e o prazo de vencimento (ou maturidades) dos investimentos feitos. Assim, o desenvolvimento de modelos que possibilitem a obtenção de previsões precisas sobre a estrutura temporal das taxas de juro e que permitam estudar a dinâmica da evolução das taxas de juro é de crucial importância em diversas áreas de financiamento. Neste estudo investigou-se a performance de diferentes métodos de previsão para obter a estrutura temporal das taxas de juro da Zona Euro, considerando o período entre 2009 e 2015. Em termos mais específicos, foi analisada a capacidade preditiva do modelo de Nelson-Siegel & Svensson assumindo que os parâmetros resultantes da estimação da especificação paramétrica podem ser modelizados através de métodos de séries temporais univariados (modelos ARIMA, Random walk) e multivariados (modelos VAR) e Redes Neuronais Artificiais (RNA) individuais e conjuntas. Os resultados deste estudo mostram que (i) as RNA com a previsão dos parâmetros em simultâneo exibem os valores de erro mais baixos para as maturidades de curto e médio prazo (3 meses a 5 anos); (ii) As RNAs individuais são melhores para prever as taxas de juro nas maturidades compreendidas entre os 7 e os 10 anos, e que (iii) para as maturidades de longo e muito longo prazo (15 e 30 anos respetivamente) deverá ser escolhido o modelo VAR(1). Estes resultados são robustos e consistentes para todos os horizontes de previsão analisados (1,2 e 3 meses). Contudo, no período analisado nenhum dos modelos testados apresenta valores de erro inferiores aos obtidos com o modelo Random Walk.