32 resultados para Humberto Mauro
Resumo:
A Internet conta hoje com mais de 3 mil milhões de utilizadores e esse valor não para de aumentar. Desta forma, proporcionar uma experiência online agradável aos seus utilizadores é cada vez mais importante para as empresas. De modo a tirar partido dos benefícios deste crescimento, as empresas devem ser capazes de identificar os seus clientes-alvo dentro do total de utilizadores; e, subsequentemente, personalizar a sua experiência online. Existem diversas formas de estudar o comportamento online dos utilizadores; no entanto, estas não são ideais e existe uma ampla margem para melhoria. A inovação nesta área pode comportar um grande potencial comercial e até ser disruptiva. Com isto em mente, proponho-me a estudar a possível criacão de um sistema de aprendizagem automática (machine learning) que permita prever informa ações demográficas dos utilizadores estritamente com base no seu comportamento online. Tal sistema poderia constituir uma alternativa às atuais opções, que são mais invasivas; mitigando assim preocupações ao nível da proteção de dados pessoais. No primeiro capítulo (Introdução) explico a motivação para o estudo do comportamento dos utilizadores online por parte de empresas, e descrevo as opções disponíveis atualmente. Apresento também a minha proposta e o contexto em que assenta. O capítulo termina com a identicação de limitações que possam existir a priori. O segundo capítulo (Machine Learning) fornece uma introdução sobre machine learning, com o estudo dos algoritmos que vão ser utilizados e explicando como analisar os resultados. O terceiro capítulo (Implementação) explica a implementação do sistema proposto e descreve o sistema que desenvolvi no decorrer deste estudo, e como integra-lo em sistemas já existentes. No quarto capítulo (Análise e manipulação dos dados), mostro os dados compilados e explico como os recolhi e manipulei para testar a hipótese. No quinto capítulo (Análise de dados e discussão) vemos como e que os dados recolhidos foram usados pelos vários algoritmos para descobrir como se correlacionam com dados dos utilizadores e analiso e discuto os resultados observados. Por fim, o sexto e último capítulo apresenta as conclusões. Dependendo dos resultados, mostro como a hipótese poderia ser melhor testada, ou então discuto os próximos passos para tornar o sistema realidade.
Resumo:
A estrutura temporal das taxas de juro, também conhecida por yield curve ou curva de rendimentos define a relação entre as taxas de juros e o prazo de vencimento (ou maturidades) dos investimentos feitos. Assim, o desenvolvimento de modelos que possibilitem a obtenção de previsões precisas sobre a estrutura temporal das taxas de juro e que permitam estudar a dinâmica da evolução das taxas de juro é de crucial importância em diversas áreas de financiamento. Neste estudo investigou-se a performance de diferentes métodos de previsão para obter a estrutura temporal das taxas de juro da Zona Euro, considerando o período entre 2009 e 2015. Em termos mais específicos, foi analisada a capacidade preditiva do modelo de Nelson-Siegel & Svensson assumindo que os parâmetros resultantes da estimação da especificação paramétrica podem ser modelizados através de métodos de séries temporais univariados (modelos ARIMA, Random walk) e multivariados (modelos VAR) e Redes Neuronais Artificiais (RNA) individuais e conjuntas. Os resultados deste estudo mostram que (i) as RNA com a previsão dos parâmetros em simultâneo exibem os valores de erro mais baixos para as maturidades de curto e médio prazo (3 meses a 5 anos); (ii) As RNAs individuais são melhores para prever as taxas de juro nas maturidades compreendidas entre os 7 e os 10 anos, e que (iii) para as maturidades de longo e muito longo prazo (15 e 30 anos respetivamente) deverá ser escolhido o modelo VAR(1). Estes resultados são robustos e consistentes para todos os horizontes de previsão analisados (1,2 e 3 meses). Contudo, no período analisado nenhum dos modelos testados apresenta valores de erro inferiores aos obtidos com o modelo Random Walk.