37 resultados para Environmental controls
Resumo:
Intracellular, vertically transmitted bacteria form complex and intimate relationships with their hosts. Wolbachia, maternally transmitted α- proteobacteria, live within the cells of numerous arthropod species. Wolbachia are famous master manipulators of insect reproduction: to favour their own spread they can induce male killing, parthenogenesis or cytoplasmic incompatibility. Wolbachia can also protect various insects from pathogens, which makes them a promising tool for the control of vector-borne diseases. Mosquitoes with Wolbachia have already been released in the wild to eliminate dengue. Yet, how Wolbachia manipulate their hosts remains largely unknown.(...)
Resumo:
This paper demonstrates the significance of culture in examining the relationshipbetween democratic capital and environmental performance.The aim is to examine the relationship among scores on the Environmental Performance Index and the two dimensions of cross cultural variation suggested by Ronald Inglehart and Christian Welzel. Significantional interrelationships among democracy, cultural and environmental sustaintability measures could be found, following the regression results. Firstly, higher levels of democratic capital stock are associated with better environmental performance. Secondly importance to distinguish between cultural groups could be confirmed.
Resumo:
Double degree
Resumo:
Double degree
Resumo:
The history between cetaceans and humans is documented throughout time not only in reports, descriptions, and tales but also in legal documents, laws and regulations, and tithes. This wealth of information comes from the easy spotting and identification of individuals due to their large size, surface breathing, and conspicuous above water behaviour. This work is based on historical sources and accounts accounting for cetacean presence for the period between the 12th and 17th centuries, as well as scientific articles, newspapers, illustrations, maps, non-published scientific reports, and other grey literature from the 18th century onwards. Information on whale use in Portugal's mainland has been found since as early as the 12th century and has continued to be created throughout time. No certainty can be given for medieval and earlier events, but both scavenging of stranded whales or use of captured ones may have happened. There is an increasing number of accounts of sighted, stranded, used, or captured cetaceans throughout centuries which is clearly associated with a growing effort towards the study of these animals. Scientific Latin species denominations only started to be registered from the 18th century onwards, as a consequence of the evolution of natural sciences in Portugal and increasing interest from zoologists. After the 19th century, a larger number of observations were recorded, and from the 20th century to the present day, regular scientific records have been collected. Research on the environmental history of cetaceans in Portugal shows a several-centuries-old exploitation of whales and dolphins, as resources mainly for human consumption, followed in later centuries by descriptions of natural history documenting strandings and at sea encounters. Most cetaceans species currently thought to be present in Portuguese mainland waters were at some point historically recorded.
Resumo:
Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.
Resumo:
There is a need to develop viable techniques for removal and recovery organic and inorganic compounds from environmental matrices, due to their ecotoxicity, regulatory obligations or potential supplies as secondary materials. In this dissertation, electro –removal and –recovery techniques were applied to five different contaminated environmental matrices aiming phosphorus (P) recovery and/or contaminants removal. In a first phase, the electrokinetic process (EK) was carried out in soils for (i) metalloids and (ii) organic contaminants (OCs) removal. In the case of As and Sb mine contaminated soil, the EK process was additionally coupled with phytotechnologies. In a second phase, the electrodialytic process (ED) was applied to wastes aiming P recovery and simultaneous removal of (iii) toxins from membrane concentrate, (iv) heavy metals from sewage sludge ash (SSA), and (v) OCs from sewage sludge (SS). EK enhanced phytoremediation showed to be viable for the remediation of soils contaminated with metalloids, as although remediation was low, it combines advantages of both technologies while allowing site management. EK also proved to be an effective remediation technology for the removal and degradation of emerging OCs from two types of soil. Aiming P recovery and contaminants removal, different ED cell set-ups were tested. For the membrane concentrates, the best P recovery was achieved in a three compartment (3c) cell, but the highest toxin removal was obtained in a two compartment (2c) cell, placing the matrix in the cathode end. In the case of SSA the best approach for simultaneous P recovery and heavy metals removal was to use a 2c-cell placing the matrix in the anode end. However, for simultaneous P recovery and OCs removal, SS should be placed in the cathode end, in a 2c-cell. Overall, the data support that the selection of the cell design should be done case-by-case.