33 resultados para DIFFERENTIAL EVOLUTION
Resumo:
Large chromosomal rearrangements are common in natural populations and thought to be involved in speciation events. In this project, we used experimental evolution to determine how the speed of evolution and the type of accumulated mutations depend on the ancestral chromosomal structure and genotype. We utilized two Wild Type strains and a set of genetically engineered Schizosaccharomyces pombe strains, different solely in the presence of a certain type of chromosomal variant (inversions or translocations), along with respective controls. Previous research has shown that these chromosomal variants have different fitness levels in several environments, probably due to changes in the gene expression along the genome. These strains were propagated in the laboratory at very low population sizes, in which we expect natural selection to be less efficient at purging deleterious mutations. We then measured these strains’ changes in fitness throughout this accumulation of deleterious mutations, comparing the evolutionary trajectories in the different rearrangements to understand if the chromosomal structure affected the speed of evolution. We also tested these mutations for possible epistatic effects and estimated their parameters: the number of arising deleterious mutations per generation (Ud) and each one’s mean effect (sd).
Resumo:
The evolution of a technology and the understanding of the moment in its life cycle is of the utmost importance to the entry strategy devised by any company. Having the entry of EDP Brazil on the micro-generation market as background, the present workproject attempts to summarize the most important topics in management literature concerning the theory of technology life-cycles and the updated literature on developments of photovoltaic technology to infer the current positioning of this technology in the theoretical models. The need for this type of work stems from the very common lack of bridging between the academic research of economic aspects relevant to the evolution of technologies and the agents of research on specific technological issues. When this occurs, namely due to the external nature of research to companies, thereby escaping the harsh economic controls of a profit seeking enterprise, the evolution many times lacks the appropriate framework to be studied on a more forward looking manner and to allow for management decisions to be based on.
Resumo:
The Gallus gallus (chicken) embryo is a central model organism in evolutionary developmental biology. Its anatomy and developmental genetics have been extensively studied and many relevant evolutionary implications have been made so far. However, important questions regarding the developmental origin of the chicken skull bones are still unresolved such that no solid homology can be established across organisms. This precludes evolutionary comparisons between this and other avian model systems in which skull anatomy has evolved significantly over the last millions of years.(...)