32 resultados para CHEMICAL-SHIFT PREDICTION
Resumo:
With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.
Resumo:
Quadrature oscillators are key elements in modern radio frequency (RF) transceivers and very useful nowadays in wireless communications, since they can provide: low quadrature error, low phase-noise, and wide tuning range (useful to cover several bands). RC oscillators can be fully integrated without the need of external components (external high Q-inductors), optimizing area, cost, and power consumption. The conventional structure of ring oscillator offers poor frequency stability and phasenoise, low quality factor (Q), and besides being vulnerable to process, voltage and temperature (PVT) variations, its performance degrades as the frequency of operation increases. This thesis is devoted to quadrature oscillators and presents a detailed comparative study of ring oscillator and shift register (SR) approaches. It is shown that in SRs both phase-noise and phase error are reduced, while ring oscillators have the advantage of occupying less area and less consumption due to the reduced number of components in the circuit. Thus, although ring oscillators are more suitable for biomedical applications, SRs are more appropriate for wireless applications, especially when specification requirements are more stringent and demanding. The first architecture studied consists in a simple CMOS ring oscillator employing an odd number of static single-ended inverters as delay cells. Subsequently, the quadrature 4-stage ring oscillator concept is shown and post-layout simulations are presented. The 3 and 4-phase single-frequency local oscillator (LO) generators employing SRs are presented, the latter with 50% and 25% duty-cycles. The circuits operate at 600 MHz and 900 MHz, and were designed in a 130 nm standard CMOS technology with a voltage supply of 1.2 V.