39 resultados para security mechanisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Biologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT - The Patient Protection and Affordable Care Act shook the foundations of the US health system, offering all Americans access to health care by changing the way the health insurance industry works. As President Obama signed the Act on 23 March 2010, he said that it stood for “the core principle that everybody should have some basic security when it comes to their health care”. Unlike the U.S., the Article 64 of the Portuguese Constitution provides, since 1976, the right to universal access to health care. However, facing a severe economic crisis, Portugal has, under the supervision of the Troika, a tight schedule to implement measures to improve the efficiency of the National Health Service. Both countries are therefore despite their different situation, in a conjuncture of reform and the use of new health management measures. The present work, using a qualitative research methodology examines the Affordable Care Act in order to describe its principles and enforcement mechanisms. In order to describe the reality in Portugal, the Portuguese health system and the measures imposed by Troika are also analyzed. The intention of this entire analysis is not only to disclose the innovative U.S. law, but to find some innovative measures that could serve health management in Portugal. Essentially we identified the Exchanges and Wellness Programs, described throughout this work, leaving also the idea of the possibility of using them in the Portuguese national health system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química Sustentável

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biochemistry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the PhD degree in Biochemistry, Neurosciences

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doctoral dissertation for Ph.D. degree in Sustainable Chemistry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organisms produce correctly patterned structures across a wide range of organ and body sizes. Despite considerable work revealing the mechanisms that regulate the growth and patterning of organs, those responsible for coordinating organ development with whole-body development are still largely unknown.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike injury to the peripheral nervous system (PNS), where injured neurons can trigger a regenerative program that leads to axonal elongation and in some cases proper reinnervation, after injury to the central nervous system (CNS) neurons fail to produce the same response. The regenerative program includes the activation of several injury signals that will lead to the expression of genes associated with axonal regeneration. As a consequence, the spawned somatic response will ensure the supply of molecular components required for axonal elongation. The capacity of some neurons to trigger a regenerative response has led to investigate the mechanisms underlying neuronal regeneration. Thus, non-regenerative models (like injury to the CNS) and regenerative models (such as injury to the PNS) were used to understand the differences underlying those two responses to injury. To do so, the regenerative properties of dorsal root ganglion (DRG) neurons were addressed. This particular type of neurons possesses two branches, a central axon, that has a limited capacity to regenerate; and a peripheral axon, where regeneration can occur over long distances. In the first paradigm used to understand the neuronal regeneration mechanisms, we evaluated the activation of injury signals in a non-regenerative model. Injury signals include the positive injury signals, which are described as being enhancers of axonal regeneration by activating several transcription factors. The currently known positive injury signals are ERK, JNK and STAT3. To evaluate whether the lack of regeneration following injury to the central branch of DRG neurons was due to inactivation of these signals, activation of the transcription factors pELK-1, p-c-jun (downstream targets of ERK and JNK, respectively) and pSTAT3 were examined. Results have shown no impairment in the activation of these signals. As a consequence, we further proceed with evaluation of other candidates that could participate in axonal regeneration failure. By comparing the protein profiles that were triggered following either injury to the central branch of DRG neurons or injury to their peripheral branch, we were able to identify high levels of GSK3-β, ROCKII and HSP-40 after injury to the central branch of DRG neurons. While in vitro knockdown of HSP-40 in DRG neurons showed to be toxic for the cells, evaluation of pCRMP2 (a GSK3-β downstream target) and pMLC (a ROCKII downstream target), which are known to impair axonal regeneration, revealed high levels of both proteins following injury to the central branch when comparing with injury to their peripheral one. Altogether, these results suggest that activation of positive injury signals is not sufficient to elicit axonal regeneration; HSP-40 is likely to participate in the cell survival program; whereas GSK3-β and ROCKII activity may condition the regenerative capacity following injury to the nervous system.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of new fungal pathogens, either of plants or animals, and the increasing number of reported cases of resistant human pathogenic strains to the available antifungal drugs reinforces the need for better understanding the biology of filamentous fungi. Conventional drugs target components of the fungal membrane or cell wall, therefore identifying novel intracellular targets, yet unique to fungi, is a global priority.(...)