19 resultados para reliability algorithms
Resumo:
Benefits of long-term monitoring have drawn considerable attention in healthcare. Since the acquired data provides an important source of information to clinicians and researchers, the choice for long-term monitoring studies has become frequent. However, long-term monitoring can result in massive datasets, which makes the analysis of the acquired biosignals a challenge. In this case, visualization, which is a key point in signal analysis, presents several limitations and the annotations handling in which some machine learning algorithms depend on, turn out to be a complex task. In order to overcome these problems a novel web-based application for biosignals visualization and annotation in a fast and user friendly way was developed. This was possible through the study and implementation of a visualization model. The main process of this model, the visualization process, comprised the constitution of the domain problem, the abstraction design, the development of a multilevel visualization and the study and choice of the visualization techniques that better communicate the information carried by the data. In a second process, the visual encoding variables were the study target. Finally, the improved interaction exploration techniques were implemented where the annotation handling stands out. Three case studies are presented and discussed and a usability study supports the reliability of the implemented work.
Resumo:
The computational power is increasing day by day. Despite that, there are some tasks that are still difficult or even impossible for a computer to perform. For example, while identifying a facial expression is easy for a human, for a computer it is an area in development. To tackle this and similar issues, crowdsourcing has grown as a way to use human computation in a large scale. Crowdsourcing is a novel approach to collect labels in a fast and cheap manner, by sourcing the labels from the crowds. However, these labels lack reliability since annotators are not guaranteed to have any expertise in the field. This fact has led to a new research area where we must create or adapt annotation models to handle these weaklylabeled data. Current techniques explore the annotators’ expertise and the task difficulty as variables that influences labels’ correction. Other specific aspects are also considered by noisy-labels analysis techniques. The main contribution of this thesis is the process to collect reliable crowdsourcing labels for a facial expressions dataset. This process consists in two steps: first, we design our crowdsourcing tasks to collect annotators labels; next, we infer the true label from the collected labels by applying state-of-art crowdsourcing algorithms. At the same time, a facial expression dataset is created, containing 40.000 images and respective labels. At the end, we publish the resulting dataset.
Resumo:
Remote sensing - the acquisition of information about an object or phenomenon without making physical contact with the object - is applied in a multitude of different areas, ranging from agriculture, forestry, cartography, hydrology, geology, meteorology, aerial traffic control, among many others. Regarding agriculture, an example of application of this information is regarding crop detection, to monitor existing crops easily and help in the region’s strategic planning. In any of these areas, there is always an ongoing search for better methods that allow us to obtain better results. For over forty years, the Landsat program has utilized satellites to collect spectral information from Earth’s surface, creating a historical archive unmatched in quality, detail, coverage, and length. The most recent one was launched on February 11, 2013, having a number of improvements regarding its predecessors. This project aims to compare classification methods in Portugal’s Ribatejo region, specifically regarding crop detection. The state of the art algorithms will be used in this region and their performance will be analyzed.