24 resultados para regolith porosity
Resumo:
Durability of Building Materials and Components (Vasco Peixoto de de Freitas, J.M.P.Q. Delgado, eds.), Building Pathology and Rehabilitation, vol. 3, VIII, 105-126. ISBN: 978-3-642-37474-6 (Print) 978-3-642-37475-3 (Online). Springer-Verlag Berlin Heidelberg. DOI: 10.1007/978-3-642-37475-3_5
Resumo:
International RILEM Workshop on Repairs Mortars for Historic Masonry, Technical University of Delft, 2009
Resumo:
2nd Historic Mortars Conference - HMC 2010 and RILEM TC 203-RHM Final Workshop, Prague, September 2010
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Perfil de Engenharia de Sistemas Ambientais
Resumo:
The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. Scrap tire rubber has been studied as aggregate for cementitious materials. Natural hydraulic limes are natural binders with particular characteristics of both air and hydraulic binders. Their specifications became stricter with the last version of EN 459-1:2010. In this study scrap tire rubber was used as additional aggregate of mortars, based on NHL3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained almost directly from industry (only after sieving for preparation of particle sizes similar to mortar aggregate) and separated fine, medium and coarse fractions; 0%, 18%, 36% and 54% weight of binder, corresponding to 2.5%, 5% and 7.5% weight of sand. The influence of the rubbers´ additions on the mortars´ fresh state, mechanical and physical performance is presented, namely by flow table consistency, water retention, fresh bulk density, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.
Resumo:
Acrylic bone cement (BC) is widely used as an anchor of artificial joints. Bacterial infection due to biofilm formation and inflammation are common and difficult to treat problems associated with commercial available BC formulations. Research on novel BC compositions is urgently needed. The main objective of this thesis was to develop a new biocompatible antibiotic-loaded BC with improved release profile. To achieve that aim several additives were incorporated, as an antibiotic (levofloxacin) to combat bacterial growth, an anti-inflammatory drug (diclofenac) to decrease the inflammatory process and two well-known and broadly used biopolymers, alginate and chitosan in order to increase matrix porosity, and in this way to intensify the amount of released drug. Novel BC formulations were tested in order to find the most suitable one that had potential to proceed to clinical application. Numerous tests were conducted as: a) evaluation of drug release profiles in different biomimetic media, b) mechanical and surface studies, c) microbiological activity testing against Staphylococcus aureus and d) in vitro biocompatibility assays (fibroblasts and osteoblasts). In general, the addition of biopolymers increased drug release, didn’t compromised BC mechanical properties and increased BC hydrophilicity. Microbiological testing revealed that Lev[BC]Chi was the only matrix that reduced significantly biofilm formation. On the contrary, alginate and diclofenac loading into BC seemed to increase biofilm growth. Biocompatibility studies showed some decrease in cell viability, in particularly on osteoblasts, mainly due to the high amounts of released drugs. In conclusion, the present work has shown that the matrix with more potential to proceed in further investigations was Lev[BC]Chi. Other conditions (namely additives and drugs concentrations) should be evaluated with the other tested BC matrices before being discharged.
Resumo:
The restoration materials currently used to fill gaps in architectural historical azulejos (e.g. lime or organic resin pastes) usually show serious drawbacks in terms of compatibility, effectiveness and durability. The existing solutions do not fully protect azulejos in outdoor conditions and frequently result in further deterioration. Geopolymers can be a potential solution for azulejo lacunae infill given the chemical-mineralogical similitude to the ceramic body, and also the durability and versatile range of physical properties that can be obtained through the manipulation of their formulation and curing conditions. This work presents and discusses the viability of the use of geopolymeric pastes to fill lacunae in azulejos or to act as “cold” cast ceramic tile surrogates reproducing missing azulejo fragments. The formulation of geopolymers, namely the type of activators, the aluminosilicate source, the amount of water (to meet adequate workability requirements) and curing conditions were studied. The need for post-curing desalination was also considered envisaging their application in the restoration of outdoor architectural historical azulejos frequently exposed to adverse environmental conditions. The possible advantages and disadvantages of the use of geopolymers in the conservation of azulejos are also discussed. Several techniques were used to study the chemical and physical behavior of geopolymers, namely FT-IR, XRD, MIP, SEM-EDS, WDXRF, electrical conductivity, open porosity, bending strength, adhesion strength, water vapour permeability, thermal expansion and hydric expansion. The results indicate that geopolymers are a promising material for restoration of azulejos, exhibiting some properties, such as adhesion to the ceramic substrate, higher than inorganic materials used nowadays, such as aerial lime based pastes.
Resumo:
The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. In this study scrap tire rubber was used as additional aggregate of mortars based on natural hydraulic lime NHL 3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained directly from industry and separated fine, medium and coarse fractions; 0 %, 18 %, 36 % and 54 % of the weight of binder, corresponding to 2.5 %, 5 % and 7.5 % of the weight of sand. As mortars based on NHL specifications became stricter with the current version of EN 459–1:2015, the influence of the rubber’s additions on the mortars’ fresh state, mechanical and physical performance is presented in this work: flow table consistency, water retention, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity are studied. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.
Resumo:
The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.