28 resultados para random search algorithms
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Física
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
This work studies the combination of safe and probabilistic reasoning through the hybridization of Monte Carlo integration techniques with continuous constraint programming. In continuous constraint programming there are variables ranging over continuous domains (represented as intervals) together with constraints over them (relations between variables) and the goal is to find values for those variables that satisfy all the constraints (consistent scenarios). Constraint programming “branch-and-prune” algorithms produce safe enclosures of all consistent scenarios. Special proposed algorithms for probabilistic constraint reasoning compute the probability of sets of consistent scenarios which imply the calculation of an integral over these sets (quadrature). In this work we propose to extend the “branch-and-prune” algorithms with Monte Carlo integration techniques to compute such probabilities. This approach can be useful in robotics for localization problems. Traditional approaches are based on probabilistic techniques that search the most likely scenario, which may not satisfy the model constraints. We show how to apply our approach in order to cope with this problem and provide functionality in real time.
Resumo:
This paper studies the effects of monetary policy on mutual fund risk taking using a sample of Portuguese fixed-income mutual funds in the 2000-2012 period. Firstly I estimate time-varying measures of risk exposure (betas) for the individual funds, for the benchmark portfolio, as well as for a representative equally-weighted portfolio, through 24-month rolling regressions of a two-factor model with two systematic risk factors: interest rate risk (TERM) and default risk (DEF). Next, in the second phase, using the estimated betas, I try to understand what portion of the risk exposure is in excess of the benchmark (active risk) and how it relates to monetary policy proxies (one-month rate, Taylor residual, real rate and first principal component of a cross-section of government yields and rates). Using this methodology, I provide empirical evidence that Portuguese fixed-income mutual funds respond to accommodative monetary policy by significantly increasing exposure, in excess of their benchmarks, to default risk rate and slightly to interest risk rate as well. I also find that the increase in funds’ risk exposure to gain a boost in return (search-for-yield) is more pronounced following the 2007-2009 global financial crisis, indicating that the current historic low interest rates may incentivize excessive risk taking. My results suggest that monetary policy affects the risk appetite of non-bank financial intermediaries.
Resumo:
This project tries to assess whether hospitals react to random demand pressure by discharging patients earlier than expected. As a matter of fact, combining an unpredictable demand for medical services with limited and, to some extent, fixed medical resources, generates strong incentives to discharge patients earlier than expected when demand is high − increasing the risk of readmission and decreasing the benefit from treatment. This work was conducted as a way to determine whether those incentives actually affect discharging decisions. Analysis of Portuguese hospitals data shows that hospital utilization levels at the time of admission, prior to the admission and post admission do have a negative impact over the length of stay in hospital, although this impact is quantitatively irrelevant. More than that, larger utilization levels have a positive impact over the probability of being discharged at certain days of the week, indicating that an early discharges problem may exist.
Resumo:
Combinatorial Optimization Problems occur in a wide variety of contexts and generally are NP-hard problems. At a corporate level solving this problems is of great importance since they contribute to the optimization of operational costs. In this thesis we propose to solve the Public Transport Bus Assignment problem considering an heterogeneous fleet and line exchanges, a variant of the Multi-Depot Vehicle Scheduling Problem in which additional constraints are enforced to model a real life scenario. The number of constraints involved and the large number of variables makes impracticable solving to optimality using complete search techniques. Therefore, we explore metaheuristics, that sacrifice optimality to produce solutions in feasible time. More concretely, we focus on the development of algorithms based on a sophisticated metaheuristic, Ant-Colony Optimization (ACO), which is based on a stochastic learning mechanism. For complex problems with a considerable number of constraints, sophisticated metaheuristics may fail to produce quality solutions in a reasonable amount of time. Thus, we developed parallel shared-memory (SM) synchronous ACO algorithms, however, synchronism originates the straggler problem. Therefore, we proposed three SM asynchronous algorithms that break the original algorithm semantics and differ on the degree of concurrency allowed while manipulating the learned information. Our results show that our sequential ACO algorithms produced better solutions than a Restarts metaheuristic, the ACO algorithms were able to learn and better solutions were achieved by increasing the amount of cooperation (number of search agents). Regarding parallel algorithms, our asynchronous ACO algorithms outperformed synchronous ones in terms of speedup and solution quality, achieving speedups of 17.6x. The cooperation scheme imposed by asynchronism also achieved a better learning rate than the original one.
Resumo:
This paper attempts to prove that in the years 1735 to 1755 Venice was the birthplace and cradle of Modern architectural theory, generating a major crisis in classical architecture traditionally based on the Vitruvian assumption that it imitates early wooden structures in stone or in marble. According to its rationalist critics such as the Venetian Observant Franciscan friar and architectural theorist Carlo Lodoli (1690-1761) and his nineteenth-century followers, classical architecture is singularly deceptive and not true to the nature of materials, in other words, dishonest and fallacious. This questioning did not emanate from practising architects, but from Lodoli himself– a philosopher and educator of the Venetian patriciate – who had not been trained as an architect. The roots of this crisis lay in a new approach to architecture stemming from the new rationalist philosophy of the Enlightenment age with its emphasis on reason and universal criticism.
Resumo:
Search is now going beyond looking for factual information, and people wish to search for the opinions of others to help them in their own decision-making. Sentiment expressions or opinion expressions are used by users to express their opinion and embody important pieces of information, particularly in online commerce. The main problem that the present dissertation addresses is how to model text to find meaningful words that express a sentiment. In this context, I investigate the viability of automatically generating a sentiment lexicon for opinion retrieval and sentiment classification applications. For this research objective we propose to capture sentiment words that are derived from online users’ reviews. In this approach, we tackle a major challenge in sentiment analysis which is the detection of words that express subjective preference and domain-specific sentiment words such as jargon. To this aim we present a fully generative method that automatically learns a domain-specific lexicon and is fully independent of external sources. Sentiment lexicons can be applied in a broad set of applications, however popular recommendation algorithms have somehow been disconnected from sentiment analysis. Therefore, we present a study that explores the viability of applying sentiment analysis techniques to infer ratings in a recommendation algorithm. Furthermore, entities’ reputation is intrinsically associated with sentiment words that have a positive or negative relation with those entities. Hence, is provided a study that observes the viability of using a domain-specific lexicon to compute entities reputation. Finally, a recommendation system algorithm is improved with the use of sentiment-based ratings and entities reputation.
Resumo:
This research intends to examine if there were significant differences on the brand engagement and on the electronic word of mouth (e-WOM)1 referral intention through Facebook between Generation X and Generation Y (also called millennials). Also, this study intends to examine if there are differences in the motivations that drive these generations to interact with brands through Facebook. Results indicated that Generation Y members consumed more content on Facebook brands’ pages than Generation X. Also, they were more likely to have an e-WOM referral intention as well as being more driven by brand affiliation and opportunity seeking. Finally, currently employed individuals were found to contribute with more content than students. This study fills the gap in the literature by addressing how marketing professionals should market their brand and interact and engage with their customers, based on customers’ generational cohort.