37 resultados para micro gas turbine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryogen-free superconducting magnet systems have become popular during the last two decades for the simple reason that with the use of liquid helium is rather cumbersome and is a scarce resource. Some available CFMS uses a mechanical cryocooler as cold source of the superconductor magnet. However, the cooling of the sample holder is still made through an open circuit of helium. A thermal management of a completely cryogen-free system is possible to be implemented by using a controlled gas gap heat switch (GGHS) between the cryocooler and the variable temperature insert (VTI). This way it would eliminate the helium open circuit. Heat switches are devices that allow to toggle between two distinct thermal states (ON and OFF state). Several cryogenic applications need good thermal contact and a good thermal insulation at different stages of operation. A versatile GGHS was designed and built with a 100 mm gap and tested with helium as exchange gas. An analytic thermal model was developed and a good agreement with the experimental data was obtained. The device was tested on a crycooler at 4 to 80 K ranges. A 285 mW/K thermal conductance was measured at ON state and 0.09 mW/K at OFF. 3000 ON/OFF thermal conductance ratio was obtained at 4 K with helium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a volumetric unit previously assembled by the research group was upgraded. This unit revamping was necessary due to the malfunction of the solenoid valves employed in the original experimental setup, which were not sealing the gas properly leading to erroneous adsorption equilibrium measurements. Therefore, the solenoid valves were substituted by manual ball valves. After the volumetric unit improvement its operation was validated. For this purpose, the adsorption equilibrium of carbon dioxide (CO2) at 323K and 0 - 20 bar was measured on two different activated carbon samples, in the of extrudates (ANG6) and of a honeycomb monolith (ACHM). The adsorption equilibrium results were compared with data previously measured by the research group, using a high-pressure microbalance from Rubotherm GmbH (Germany) – gravimetric. The results obtained using both apparatuses are coincident thus validating the good operation of the volumetric unit upgraded in this work. Furthermore, the adsorption equilibrium of CO2 at 303K and 0 - 10 bar on Metal-Organic Frameworks (MOFs) Cu-BTC and Fe-BTC was also studied. The CO2 adsorption equilibrium results for both MOFs were compared with the literature results showing good agreement, which confirms the good quality of the experimental results obtained in the new volumetric unit. Cu-BTC sample showed significantly higher CO2 adsorption capacity when compared with the Fe-BTC sample. The revamping of the volumetric unit included a new valve configuration in order to allow testing an alternative method for the measurement of adsorption equilibrium. This new method was employed to measure the adsorption equilibrium of CO2 on ANG6 and ACHM at 303, 323 and 353K within 0-10 bar. The good quality of the obtained experimental data was testified by comparison with data previously obtained by the research group in a gravimetric apparatus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Probing micro-/nano-sized surface conformations, which are ubiquitous in biological systems, by using liquid crystal droplets, which change their ordering and optical appearance in response to the presence of more than ten times smaller cellulose based micro/nano fibers, might find new uses in a range of biological environments and sensors. Previous studies indicate that electrospun micro/nano cellulosic fibers produced from liquid crystalline solutions could present a twisted form [1]. In this work, we study the structures of nematic liquid crystal droplets threaded by cellulose fibers prepared from liquid crystalline and isotropic solutions as well as droplets pierced by spider-made fibers [2]. Planar anchoring at the fibers and planar and homeotropic at the drop surfaces allowed probing cellulose fibers different helical structures as well as aligned filaments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro/nano wrinkled patterns on cross-linked urethane/urea polymeric flexible free standing films with two soft segments, polypropylene oxide and polybutadiene, can be induced by UV-irradiation. The ability to write/erase these 3D structures, in a controlled manner, is the main focus of this work. The imprinting of the wrinkled structures was accomplished by swelling in an appropriate solvent followed by drying the membranes after the cross-linking process and UV irradiation. The surface tailoring of the elastomeric membranes was imaged by optical microscopy, scanning electronic microscopy and by atomic force microscopy. To erase the wrinkled structures the elastomers were swollen. The swelling as well as the sol/gel fraction and the UV radiation were tuned in order to control the wrinkles characteristics. It was found that the wrinkles wavelength, in the order of microns (1±0,25μm), was stamped by the UV radiation intensity and exposure time while the wrinkles' amplitude, in the order of nanometers (150-450 nm), was highly dependent on the swelling and sol/gel fraction. A prototype for volatile organic compounds detection was developed taking advantage of the unique 3D micro/nano wrinkles features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of today's biggest concerns is the increase of energetic needs, especially in the developed countries. Among various clean energies, wind energy is one of the technologies that assume greater importance on the sustainable development of humanity. Despite wind turbines had been developed and studied over the years, there are phenomena that haven't been yet fully understood. This work studies the soil-structure interaction that occurs on a wind turbine's foundation composed by a group of piles that is under dynamic loads caused by wind. This problem assumes special importance when the foundation is implemented on locations where safety criteria are very demanding, like the case of a foundation mounted on a dike. To the phenomenon of interaction between two piles and the soil between them it's given the name of pile-soil-pile interaction. It is known that such behavior is frequency dependent, and therefore, on this work evaluation of relevant frequencies for the intended analysis is held. During the development of this thesis, two methods were selected in order to assess pile-soil-pile interaction, being one of analytical nature and the other of numerical origin. The analytical solution was recently developed and its called Generalized pile-soil-pile theory, while for the numerical method the commercial nite element software PLAXIS 3D was used. A study of applicability of the numerical method is also done comparing the given solution by the nite element methods with a rigorous solution widely accepted by the majority of the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of energy, natural gas is an essential bridge to a clean, low carbon, renewable energy era. However, natural gas processing and transportation regulation require the removal of contaminant compounds such as carbon dioxide (CO2). Regarding clean air, the increasing atmospheric concentrations of greenhouse gases, specifically CO2, is of particular concern. Therefore, new costeffective, high performance technologies for carbon capture have been researched and the design of materials with the ability to efficiently separate CO2 from other gases is of vital importance.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape memory alloys are characterized by the ability of recovering their initial shape after being deformed and by superelasticity. Since the discovery of these alloys, a new field of interest emerged not only for the scientific community but also to many industries. However, these alloys present poor machinability which constitute a constrain in the design of complex components for new applications. Thus, the demand for joining techniques able to join these alloys without compromising their properties became of great importance to enlarge the complexity of existing applications. Literature shows that these alloys are joined mainly using laser welding. In the present study, similar NiTi butt joints, were produced using TIG welding. The welds were performed in 1.5 mm thick plates across the rolling direction. A special fixture and gas assist device was designed and manufactured. Also a robot arm was adapted to accommodate the welding torch to assure the repeatability of the welding parameters. Welds were successfully achieved without macroscopic defects, such as pores and distortions. Very superficial oxidation was seen on the top surface due to insufficient shielding gas flow on the weld face. The welded joints were mechanically tested and structurally characterized. Testing methods were used to evaluate macro and microstructure, as well as the phase transformation temperatures, the mechanical single and cyclic behaviour and the shape recovery ability. Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), microhardness measurements were techniques also used to evaluate the welded joints. A depletion in Ni in the fusion zone was seen, as well as a shift in Ms temperature. For strain values of 4% the accumulated irrecoverable strain was of about 30% and increased with the strain imposed during cycling. Nevertheless, a complete recovery of initial shape was observed when testing the shape memory effect on a dedicated device that introduces a deformation of 6.7%. That is, the welding procedure does not remove the ability of the specimens to recover their initial shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As Micro e Pequenas Empresas (MPE) possuem na sua essência recursos limitados. Raramente possuem um Sistema Integrado de Gestão (SIG) que lhes permita gerir o seu negócio de forma transversal e que mapeie todos os processos da empresa. Devido ao número reduzido de colaboradores, não dispõem internamente alguns serviços. O seu espaço de mercado é em geral limitado. As suas competências específicas raramente permitem apresentar uma oferta global. Por serem pequenas, não têm força negocial perante os seus fornecedores e eventuais parceiros estratégicos. A Arquitetura de Sistemas de Informação (ASI) permite representar e mapear os diversos aspetos da gestão das empresas e alinhar as Tecnologias de Informação e Comunicação (TIC) com as necessidades destas empresas. Este trabalho pretende apresentar e descrever uma Macro Arquitetura para a construção de SIG, orientados para as MPE, e que inclua um conjunto de serviços integrados numa única plataforma.