27 resultados para metal chelating ability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

J Biol Inorg Chem (2008) 13:1185–1195 DOI 10.1007/s00775-008-0414-3

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Doutor em Química Sustentável, especialidade de Química-Física Inorgânica, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química Sustentável

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, Perfil de Engenharia Sanitária

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Tecnologia e Segurança Alimentar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing demand for materials and devices with new functionalities led to the increased inter-est in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by sol-vothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the perfor-mance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The dep-osition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The produced transistors work at low potential and with improved ON-OFF current ratio, up to 6 orders of mag-nitude. To summarize, the low temperatures used in the production of the devices are compatible with flexible substrates and additionally, the low cost of the techniques involved can be adapted for disposable devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present thesis I analyse the roles of individual ability and structural embeddedness on entrepreneurial success. The results retrieved from a matched employer-employee longitudinal data set show prior worker productivities and environmental embeddedness to have a persistent positive impact on the size and growth rates of new firms. What is more, embeddedness facilitates the impact of ability on start-up performance with outsiders of comparable abilities starting smaller and slower growing firms. Those in higher ability categories are more likely to transfer and also, albeit to a lesser extent, close their ventures, an effect attributed to the higher opportunity costs associated with the group. Firms managed by embedded agents enjoy longer longevities and have better chances of finding a new owner after the departure of the previous one. Finally, higher ability types show evidence of specialisation in serial entrepreneurship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quasi two-dimensional electron gas (q2DEG) hosted in the interface of an epitaxially grown lanthanum aluminate (LaAlO3) thin film with a TiO2-termi-nated strontium titanate (SrTiO3) substrate (001) has been massively studied in the last few years. The confinement of mobile electrons to within a few nanome-ters from the interface, superconductive behavior at low temperatures and elec-tron mobility exceeding 1000 cm2/(V.s) make this system an interesting candi-date to explore the physics of spin injection and transport. However, due to the critical thickness for conduction of 4 unit cells (uc) of LaAlO3, a high tunneling resistance hampers electrical access to the q2DEG, preventing proper injection of spin polarized current. Recently, our group found that depositing a thin overlayer of Co on LaAlO3 reduces the critical thickness, enabling conduction with only 1 uc of LaAlO3. Two scenarios arise to explain this phenomenon: a pinning of the Fermi level in the metal, inducing charge transfer in the SrTiO3; the creation of oxygen vacancies at the interface between LaAlO3 and the metal, leading to an n-type doping of the SrTiO3. In this dissertation, we will report on magnetotransport of metal/LaAlO3/SrTiO3 (metal: Ti, Ta, Co, Py, Au, Pt, Pd) heterostructures with 2 uc of LaAlO3 studied at low temperatures (2 K) and high magnetic fields (9 T). We have analyzed the transport properties of the gas, namely, the carrier concen-tration, mobility and magnetotransport regime and we will discuss the results in the light of the two scenarios mentioned above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical, numerical and experimental models have been developed over time to try to characterize and understand the metal cutting process by chip removal. A true knowledge of the cutting process by chip removal is required by the increasing production, by the quality requirements of the product and by the reduced production time, in the industries in which it is employed. In this thesis an experimental setup is developed to evaluate the forces and the temperature distribution in the tool according to the orthogonal cutting model conditions, in order to evaluate its performance and its possible adoption in future works. The experimental setup is developed in a CNC lathe and uses an orthogonal cutting configuration, in which thin discs fixed onto a mandrel are cut by the cutting insert. In this experimental setup, the forces are measured by a piezoelectric dynamometer while temperatures are measured by thermocouples placed juxtaposed to the side face of the cutting insert. Three different solutions are implemented and evaluated for the thermocouples attachment in the cutting insert: thermocouples embedded in thermal paste, thermocouples embedded in copper plate and thermocouples brazed in the cutting insert. From the tests performed in the experimental setup it is concluded that the adopted forces measurement technique shows a good performance. Regarding to the adopted temperatures measurement techniques, only the thermocouples brazed in the cutting insert solution shows a good performance for temperature measurement. The remaining solutions show contact problems between the thermocouple and the side face of the cutting insert, especially when the vibration phenomenon intensifies during the cut. It is concluded that the experimental setup does not present a sufficiently robust and reliable performance, and that it can only be used in future work after making improvements in the assembly of the thermocouples.