18 resultados para landscape change detection


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rapid growth of big cities has been noticed since 1950s when the majority of world population turned to live in urban areas rather than villages, seeking better job opportunities and higher quality of services and lifestyle circumstances. This demographic transition from rural to urban is expected to have a continuous increase. Governments, especially in less developed countries, are going to face more challenges in different sectors, raising the essence of understanding the spatial pattern of the growth for an effective urban planning. The study aimed to detect, analyse and model the urban growth in Greater Cairo Region (GCR) as one of the fast growing mega cities in the world using remote sensing data. Knowing the current and estimated urbanization situation in GCR will help decision makers in Egypt to adjust their plans and develop new ones. These plans should focus on resources reallocation to overcome the problems arising in the future and to achieve a sustainable development of urban areas, especially after the high percentage of illegal settlements which took place in the last decades. The study focused on a period of 30 years; from 1984 to 2014, and the major transitions to urban were modelled to predict the future scenarios in 2025. Three satellite images of different time stamps (1984, 2003 and 2014) were classified using Support Vector Machines (SVM) classifier, then the land cover changes were detected by applying a high level mapping technique. Later the results were analyzed for higher accurate estimations of the urban growth in the future in 2025 using Land Change Modeler (LCM) embedded in IDRISI software. Moreover, the spatial and temporal urban growth patterns were analyzed using statistical metrics developed in FRAGSTATS software. The study resulted in an overall classification accuracy of 96%, 97.3% and 96.3% for 1984, 2003 and 2014’s map, respectively. Between 1984 and 2003, 19 179 hectares of vegetation and 21 417 hectares of desert changed to urban, while from 2003 to 2014, the transitions to urban from both land cover classes were found to be 16 486 and 31 045 hectares, respectively. The model results indicated that 14% of the vegetation and 4% of the desert in 2014 will turn into urban in 2025, representing 16 512 and 24 687 hectares, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of Quality of Life (Qol) has been conducted on various scales throughout the years with focus on assessing overall quality of living amongst citizens. The main focus in these studies have been on economic factors, with the purpose of creating a Quality of Life Index (QLI).When it comes down to narrowing the focus to the environment and factors like Urban Green Spaces (UGS) and air quality the topic gets more focused on pointing out how each alternative meets this certain criteria. With the benefits of UGS and a healthy environment in focus a new Environmental Quality of Life Index (EQLI) will be proposed by incorporating Multi Criteria Analysis (MCA) and Geographical Information Systems (GIS). Working with MCA on complex environmental problems and incorporating it with GIS is a challenging but rewarding task, and has proven to be an efficient approach among environmental scientists. Background information on three MCA methods will be shown: Analytical Hierarchy Process (AHP), Regime Analysis and PROMETHEE. A survey based on a previous study conducted on the status of UGS within European cities was sent to 18 municipalities in the study area. The survey consists of evaluating the current status of UGS as well as planning and management of UGS with in municipalities for the purpose of getting criteria material for the selected MCA method. The current situation of UGS is assessed with use of GIS software and change detection is done on a 10 year period using NDVI index for comparison purposes to one of the criteria in the MCA. To add to the criteria, interpolation of nitrogen dioxide levels was performed with ordinary kriging and the results transformed into indicator values. The final outcome is an EQLI map with indicators of environmentally attractive municipalities with ranking based on predefinedMCA criteria using PROMETHEE I pairwise comparison and PROMETHEE II complete ranking of alternatives. The proposed methodology is applied to Lisbon’s Metropolitan Area, Portugal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente