24 resultados para feature based modelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation to Obtain Master Degree in Biomedical Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Industrial

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted for obtaining the degree of Master in Environmental Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transport is an essential sector in modern societies. It connects economic sectors and industries. Next to its contribution to economic development and social interconnection, it also causes adverse impacts on the environment and results in health hazards. Transport is a major source of ground air pollution, especially in urban areas, and therefore contributing to the health problems, such as cardiovascular and respiratory diseases, cancer, and physical injuries. This thesis presents the results of a health risk assessment that quantifies the mortality and the diseases associated with particulate matter pollution resulting from urban road transport in Hai Phong City, Vietnam. The focus is on the integration of modelling and GIS approaches in the exposure analysis to increase the accuracy of the assessment and to produce timely and consistent assessment results. The modelling was done to estimate traffic conditions and concentrations of particulate matters based on geo-references data. A simplified health risk assessment was also done for Ha Noi based on monitoring data that allows a comparison of the results between the two cases. The results of the case studies show that health risk assessment based on modelling data can provide a much more detail results and allows assessing health impacts of different mobility development options at micro level. The use of modeling and GIS as a common platform for the integration of different assessments (environmental, health, socio-economic, etc.) provides various strengths, especially in capitalising on the available data stored in different units and forms and allows handling large amount of data. The use of models and GIS in a health risk assessment, from a decision making point of view, can reduce the processing/waiting time while providing a view at different scales: from micro scale (sections of a city) to a macro scale. It also helps visualising the links between air quality and health outcomes which is useful discussing different development options. However, a number of improvements can be made to further advance the integration. An improved integration programme of the data will facilitate the application of integrated models in policy-making. Data on mobility survey, environmental monitoring and measuring must be standardised and legalised. Various traffic models, together with emission and dispersion models, should be tested and more attention should be given to their uncertainty and sensitivity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, participatory processes attending the need for real democracy and transparency in governments and collectives are more needed than ever. Immediate participation through channels like social networks enable people to give their opinion and become pro-active citizens, seeking applications to interact with each other. The application described in this dissertation is a hybrid channel of communication of questions, petitions and participatory processes based on Public Participation Geographic Information System (PPGIS), Participation Geographic Information System (PGIS) and ‘soft’ (subjective data) Geographic Information System (SoftGIS) methodologies. To achieve a new approach to an application, its entire design is focused on the spatial component related with user interests. The spatial component is treated as main feature of the system to develop all others depending on it, enabling new features never seen before in social actions (questions, petitions and participatory processes). Results prove that it is possible to develop a working application mainly using open source software, with the possibility of spatial and subject filtering, visualizing and free download of actions within application. The resulting application empowers society by releasing soft data and defines a new breaking approach, unseen so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the recent advances in technology and miniaturization of devices such as GPS or IMU, Unmanned Aerial Vehicles became a feasible platform for a Remote Sensing applications. The use of UAVs compared to the conventional aerial platforms provides a set of advantages such as higher spatial resolution of the derived products. UAV - based imagery obtained by a user grade cameras introduces a set of problems which have to be solved, e. g. rotational or angular differences or unknown or insufficiently precise IO and EO camera parameters. In this work, UAV - based imagery of RGB and CIR type was processed using two different workflows based on PhotoScan and VisualSfM software solutions resulting in the DSM and orthophoto products. Feature detection and matching parameters influence on the result quality as well as a processing time was examined and the optimal parameter setup was presented. Products of the both workflows were compared in terms of a quality and a spatial accuracy. Both workflows were compared by presenting the processing times and quality of the results. Finally, the obtained products were used in order to demonstrate vegetation classification. Contribution of the IHS transformations was examined with respect to the classification accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the early nineties, Mark Weiser wrote a series of seminal papers that introduced the concept of Ubiquitous Computing. According to Weiser, computers require too much attention from the user, drawing his focus from the tasks at hand. Instead of being the centre of attention, computers should be so natural that they would vanish into the human environment. Computers become not only truly pervasive but also effectively invisible and unobtrusive to the user. This requires not only for smaller, cheaper and low power consumption computers, but also for equally convenient display solutions that can be harmoniously integrated into our surroundings. With the advent of Printed Electronics, new ways to link the physical and the digital worlds became available. By combining common printing techniques such as inkjet printing with electro-optical functional inks, it is starting to be possible not only to mass-produce extremely thin, flexible and cost effective electronic circuits but also to introduce electronic functionalities into products where it was previously unavailable. Indeed, Printed Electronics is enabling the creation of novel sensing and display elements for interactive devices, free of form factor. At the same time, the rise in the availability and affordability of digital fabrication technologies, namely of 3D printers, to the average consumer is fostering a new industrial (digital) revolution and the democratisation of innovation. Nowadays, end-users are already able to custom design and manufacture on demand their own physical products, according to their own needs. In the future, they will be able to fabricate interactive digital devices with user-specific form and functionality from the comfort of their homes. This thesis explores how task-specific, low computation, interactive devices capable of presenting dynamic visual information can be created using Printed Electronics technologies, whilst following an approach based on the ideals behind Personal Fabrication. Focus is given on the use of printed electrochromic displays as a medium for delivering dynamic digital information. According to the architecture of the displays, several approaches are highlighted and categorised. Furthermore, a pictorial computation model based on extended cellular automata principles is used to programme dynamic simulation models into matrix-based electrochromic displays. Envisaged applications include the modelling of physical, chemical, biological, and environmental phenomena.