22 resultados para beam propagation method (BPM)
Resumo:
Dissertation presented to obtain the Ph.D degree in Chemistry.
Resumo:
This thesis evaluates a start-up company (Jogos Almirante Lda) whose single asset is a board game named Almirante. It aims to conclude whether it makes sense to create a company or just earn copyrights. The thesis analyzes the board game’s market, as part of the general toy’s market, from which some data exists: European countries as well as the USA. In this work it is analyzed the several ways to finance a start-up company and then present an overview of the valuation of the Jogos Almirante based on three different methods: Discounted Cash Flow, Venture Capital Method and Real Options.
Resumo:
The theme of this dissertation is the finite element method applied to mechanical structures. A new finite element program is developed that, besides executing different types of structural analysis, also allows the calculation of the derivatives of structural performances using the continuum method of design sensitivities analysis, with the purpose of allowing, in combination with the mathematical programming algorithms found in the commercial software MATLAB, to solve structural optimization problems. The program is called EFFECT – Efficient Finite Element Code. The object-oriented programming paradigm and specifically the C ++ programming language are used for program development. The main objective of this dissertation is to design EFFECT so that it can constitute, in this stage of development, the foundation for a program with analysis capacities similar to other open source finite element programs. In this first stage, 6 elements are implemented for linear analysis: 2-dimensional truss (Truss2D), 3-dimensional truss (Truss3D), 2-dimensional beam (Beam2D), 3-dimensional beam (Beam3D), triangular shell element (Shell3Node) and quadrilateral shell element (Shell4Node). The shell elements combine two distinct elements, one for simulating the membrane behavior and the other to simulate the plate bending behavior. The non-linear analysis capability is also developed, combining the corotational formulation with the Newton-Raphson iterative method, but at this stage is only avaiable to solve problems modeled with Beam2D elements subject to large displacements and rotations, called nonlinear geometric problems. The design sensitivity analysis capability is implemented in two elements, Truss2D and Beam2D, where are included the procedures and the analytic expressions for calculating derivatives of displacements, stress and volume performances with respect to 5 different design variables types. Finally, a set of test examples were created to validate the accuracy and consistency of the result obtained from EFFECT, by comparing them with results published in the literature or obtained with the ANSYS commercial finite element code.
Resumo:
According to a recent Eurobarometer survey (2014), 68% of Europeans tend not to trust national governments. As the increasing alienation of citizens from politics endangers democracy and welfare, governments, practitioners and researchers look for innovative means to engage citizens in policy matters. One of the measures intended to overcome the so-called democratic deficit is the promotion of civic participation. Digital media proliferation offers a set of novel characteristics related to interactivity, ubiquitous connectivity, social networking and inclusiveness that enable new forms of societal-wide collaboration with a potential impact on leveraging participative democracy. Following this trend, e-Participation is an emerging research area that consists in the use of Information and Communication Technologies to mediate and transform the relations among citizens and governments towards increasing citizens’ participation in public decision-making. However, despite the widespread efforts to implement e-Participation through research programs, new technologies and projects, exhaustive studies on the achieved outcomes reveal that it has not yet been successfully incorporated in institutional politics. Given the problems underlying e-Participation implementation, the present research suggested that, rather than project-oriented efforts, the cornerstone for successfully implementing e-Participation in public institutions as a sustainable added-value activity is a systematic organisational planning, embodying the principles of open-governance and open-engagement. It further suggested that BPM, as a management discipline, can act as a catalyst to enable the desired transformations towards value creation throughout the policy-making cycle, including political, organisational and, ultimately, citizen value. Following these findings, the primary objective of this research was to provide an instrumental model to foster e-Participation sustainability across Government and Public Administration towards a participatory, inclusive, collaborative and deliberative democracy. The developed artefact, consisting in an e-Participation Organisational Semantic Model (ePOSM) underpinned by a BPM-steered approach, introduces this vision. This approach to e-Participation was modelled through a semi-formal lightweight ontology stack structured in four sub-ontologies, namely e-Participation Strategy, Organisational Units, Functions and Roles. The ePOSM facilitates e-Participation sustainability by: (1) Promoting a common and cross-functional understanding of the concepts underlying e-Participation implementation and of their articulation that bridges the gap between technical and non-technical users; (2) Providing an organisational model which allows a centralised and consistent roll-out of strategy-driven e-Participation initiatives, supported by operational units dedicated to the execution of transformation projects and participatory processes; (3) Providing a standardised organisational structure, goals, functions and roles related to e-Participation processes that enhances process-level interoperability among government agencies; (4) Providing a representation usable in software development for business processes’ automation, which allows advanced querying using a reasoner or inference engine to retrieve concrete and specific information about the e-Participation processes in place. An evaluation of the achieved outcomes, as well a comparative analysis with existent models, suggested that this innovative approach tackling the organisational planning dimension can constitute a stepping stone to harness e-Participation value.
Resumo:
An ion emitter consisting of a sharp silver tip covered in RbAg4I5 solid electrolyte film has been developed and studied. An accelerating potential is applied and Ag+ ions are emitted from the tip’s apex by field evaporation. The emitted ions are collected by a Faraday cup, producing a current on the pico/nanoampere level which is read by an electrometer. The tips were produced mechanically by sandpaper polishing. The sharpest tip produced had a 2:4 m apex radius. Two deposition methods were studied: thermal vacuum and pulsed laser deposition. The best tip produced a peak current value of 96nA at 180oC, and a quasi-stable 4nA emission current at 160oC, both using an extraction potential of 10kV . The emission dependence on time, temperature and accelerating potential has been studied. Deposited films were characterized by X-ray diffraction (XRD), profilometry, optical and Scanning Electron Microscope (SEM) and Secondary Ion Mass Spectroscopy (SIMS) measurements. Several ion emitters were developed, the latter ones were all able to maintain stable high ion emissions for long periods of time. This investigation was a continuation of an ongoing project backed by the European Space Agency, with the objective of making a proof of concept of this kind of ion emitter with potential application on ion thrusters for orbiting satellites. Going forward, it would be interesting to make a finer analysis of the electrolyte’s conductivity at high temperatures, explore Wien Effect-based emission and to further develop a multi-tip ion emitter prototype.
Resumo:
Laggards are the last users to adopt a product. Prior literature on user-led innovation ignores laggards’ impact on innovation. In this paper, we develop the Lag-User Method, through which laggards can generate new ideas. Through six studies with 62 teams in three countries, we apply the method to different technologies and services and present our findings to executives to get managerial insights. Findings reveal that laggards who generate new ideas (lag-users) have different perceptions of user-friendly products and different unfulfilled needs. They prefer simple products. We propose that by involving lag-users in NPD, firms can improve the effectiveness of NPD.
Resumo:
Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).