27 resultados para Vinyl chloride.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation toobtaina Master of Science degree in Bioorganics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Bioorgânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Perfil de Engenharia de Sistemas Ambientais

Relevância:

10.00% 10.00%

Publicador:

Resumo:

9th International Masonry Conference 2014, 7-9 July, Universidade do Minho, Guimarães

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There were two main objectives in this thesis investigation, first, the production, characterisation, in vitro degradation and release studies of double walled microspheres for drug release control. The second one, and the most challenging, was the production of double walled nanospheres, also for drug control delivery. The spheres were produced using two polymers, the Poly(L-lactide)Acid, PLLA, and the Poly(L-lactide-co-glycolic)Acid, PLGA.Afterwards, a model drug, Meloxicam, which is an antiinflammatory drug, was encapsulated into the particles. Micro and nanospheres were produced by the solvent extraction/evaporation method, where perfect spherical particles were obtained. By varying the polymers PLLA/PLGA mass ratio, different core and shell composition, as well as several shell and core thickness were observed. In the particles with a PLLA/PLGA mass ratio 1:1, the shell is composed by PLLA and the core by PLGA. It was also verified that the Meloxicam has a tendency to be distributed in the PLGA layer. Micro and nanoparticles were characterised in morphology, size, polymer cristalinity properties and drug distribution. Particles degradation studies was performed, where the particles in a PVA solution of pH 7,4 where placed in an incubator, during approximately 40 days, at 120rpm, and 37ºC, simulating, as much as possible, the human body environment. From these studies, the conclusion was that particles containing a PLGA shell and a PLLA core degrade more rapidly, due to the fact that PLLA is more hydrophobic than the PLGA. Concerning the drug release controlled results, done also for 40 and 50 days, they showed that the microspheres containing a shell of PLLA release more slowly than when the shell is composed of PLGA. This result was predictable, since the drug is solubilised in the PLGA polymer and so, in that case, the PLLA shell works like a barrier between the drug and the outer medium. Another positive aspect presented by this study is the lower initial burst effect, obtained when using double walled particles, which is one of the advantages of the same. In a second part of this investigation, the production of the nanospheres was the main goal, since it was not yet accomplished by other authors or investigators. After several studies, referring to the speed, time and type of agitation, as well as, the concentration and volume of the first aqueous solution of poly-vinyl-alcohol (PVA) during the process of solvent extraction/evaporation it was possible to obtain double walled nanospheres.(...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this thesis is the investigation and optimization of the synthesis of potential fragrances. This work is projected as collaboration between the University of Applied Sciences in Merseburg and the company Miltitz Aromatics GmbH in Bitterfeld‐Wolfen (Germany). Flavoured compounds can be synthesized in different ways and by various methods. In this work, methods like the phase transfer catalysis and the Cope‐rearrangement were investigated and applied, for getting a high yield and quantity of the desired substances and without any by‐products or side reactions. This involved the study of syntheses with different process parameters such as temperature, solvent, pressure and reaction time. The main focus was on Cope‐rearrangement, which is a common method in the synthesis of new potential fragrance compounds. The substances synthesized in this work have a hepta‐1,5‐diene‐structure and that is why they can easily undergo this [3,3]‐sigma tropic rearrangement. The lead compound of all research was 2,5‐dimethyl‐2‐vinyl‐4‐hexenenitrile (Neronil). Neronil is synthesized by an alkylation of 2‐methyl‐3‐butenenitrile with prenylchloride under basic conditions in a phase‐transfer system. In this work the yield of isolated Neronil is improved from about 35% to 46% by according to the execution conditions of the reaction. Additionally the amount of side product was decreased. This synthesized hexenenitrile involved not only the aforementioned 1,5‐diene‐structure, but also a cyano group, that makes this structure a suitable base for the synthesis of new potential fragrance compounds. It was observed that Neronil can be transferred into 2,5‐dimethyl‐2‐vinyl‐4‐hexenoic acid by a hydrolysis under basic conditions. After five hours the acid can be obtained with a yield of 96%. The following esterification is realized with isobutanol to produce 2,5‐dimethyl‐2‐vinyl‐4‐hexenoic acid isobutyl ester with quantitative conversion. It was observed that the Neronil and the corresponding ester can be converted into the corresponding Cope‐product, with a conversion of 30 % and 80%. Implementing the Cope‐rearrangement, the acid was heated and an unexpected decarboxylated product is formed. To achieve the best verification of reaction development and structure, scrupulous analyses were done using GC‐MS, 1H‐NMR and 13C‐ NMR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is divided in two parts: Part 1 is focused on the analysis and treatment of a 19th century portrait of Domingos Affonso, which belongs to the Ecomuseu Municipal do Seixal; and Part 2, which is entitled “The Microclimate Frame Project” is focused on the study of Artsorb® and on the planning of a microclimate frame for the painting. In Part 1, a study of the painting’s materials was performed using complementary analytical techniques and the painting’s condition was carefully evaluated. The painting exhibited signs of mould growth, and a more detailed investigation was made of this topic to understand if the fungal community was active and if it represented a real danger to the painting. A treatment was proposed, appropriate to the painting’s condition. A description of the treatment carried out, comprising the treatment options, is also present in this section. Within the study of the microclimate frame, in Part 2, the study of the potential corrosiveness of Artsorb® was a central subject. Artsorb® sheets are one of the most widely used materials for buffering relative humidity fluctuations in microclimate frames and its reported excellent performance is enhanced by its availability in lightweight sheets that can be easily placed inside microclimate frames. However, concerns have arisen regarding the presence of the corrosive salt lithium chloride in the composition of this buffer. Consequently, the present work also aimed to understand the potential risks of using Artsorb® and the possibility of avoiding exposure of lithium chloride to the artworks through the use of Tyvek®. Results from the preliminary tests seem to indicate that Artsorb® releases lithium chloride into air. This study also showed that a Tyvek® cover over Artsorb® reduces but does not eliminate evidence of chlorine contamination, and it significantly reduces the effectiveness of the buffering material. Considering that Artsorb® appears to be unsuitable due to the release of the corrosive salt, that Tyvek® was not efficient as a barrier for lithium chloride or as a permeable material to enable the proper functioning of Artsorb®, the buffering material proposed for the use in the microclimate frames is silica gel without indicator. Based on the choice of buffering material, as a result of this study, a microclimate frame is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the work presented in this thesis was the development of an innovative approach for the separation of enantiomers of secondary alcohols, combining the use of an ionic liquid (IL) - both as solvent for conducting enzymatic kinetic resolution and as acylating agent - with the use of carbon dioxide (CO2) as solvent for extraction. Menthol was selected for testing this reaction/separation approach due to the increasing demand for this substance, which is widely used in the pharmaceutical, cosmetics and food industries. With a view to using an ionic ester as acylating agent, whose conversion led to the release of ethanol, and due to the need to remove this alcohol so as to drive reaction equilibrium forward, a phase equilibrium study was conducted for the ehtanol/(±)-menthol/CO2 system, at pressures between 8 and 10 MPa and temperatures between 40 and 50 oC. It was found that CO2 is more selective towards ethanol, especially at the lowest pressure and highest temperature tested, leading to separation factors in the range 1.6-7.6. The pressure-temperature-composition data obtained were correlated with the Peng-Robinson equation of state and the Mathias-Klotz-Prausnitz mixing rule. The model fit the experimental results well, with an average absolute deviation (AAD) of 3.7 %. The resolution of racemic menthol was studied using two lipases, namely lipase from Candida rugosa (CRL) and immobilized lipase B from Candida antarctica (CALB), and two ionic acylating esters. No reaction was detected in either case. (R,S)-1-phenylethanol was used next, and it was found that with CRL low, nonselective, conversion of the alcohol took place, whereas CALB led to an enantiomeric excess (ee) of the substrate of 95%, at 30% conversion. Other acylating agents were tested for the resolution of (±)-menthol, namely vinyl esters and acid anhydrides, using several lipases and varying other parameters that affect conversion and enantioselectivity, such as substrate concentration, solvent and temperature. One such acylating agent was propionic anhydride. It was thus performed a phase equilibrium study on the propionic anhydride/CO2 system, at temperatures between 35 and 50 oC. This study revealed that, at 35 oC and pressures from 7 MPa, the system is monophasic for all compositions. The enzymatic catalysis studies carried out with propionic anhydride revealed that the extent of noncatalyzed reaction was high, with a negative effect on enantioselectivity. These studies showed also that it was possible to reduce considerably the impact of the noncatalyzed reaction relative to the reaction catalyzed by CRL by lowering temperature to 4 oC. Vinyl decanoate was shown to lead to the best results at conditions amenable to a process combining the use of supercritical CO2 as agent for post-reaction separation. The use of vinyl decanoate in a number of IL solvents, namely [bmim][PF6], [bmim][BF4], [hmim][PF6], [omim][PF6], and [bmim][Tf2N], led to an enantiomeric excess of product (eep) values of over 96%, at about 50% conversion, using CRL. In n-hexane and supercritical CO2, reaction progressed more slowly.(...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to study the self-assembly process of C3-symmetric molecules. To accomplish this objective 1,3,5 – benzentricarboxamides (BTA) derivatives were obtained. Five C3-symmetric molecules were synthesized in moderate to good yields (39-72%) using azo-benzene, aniline, benzylamine, tryptophan and tyrosine. The aggregation behavior of the BTA derivatives was probed with 1H-NMR spectroscopy, 1H-1H 2D Nuclear Overhauser Effect Spectroscopy (NOESY) and Diffusion Ordered Spectroscopy (DOSY). These experiments allowed to study the influence of H-bonding groups, aromatic rings, unsaturated bonds and the overall geometry in the molecular self-assembly associated with the different structural patterns present on these molecules. The stacking and large molecule behavior where observed in BTA 1, aniline derivative, BTA 4, tyrosine derivative or BTA 5, tryptophan derivative, with several of those discussed functional groups such as unsaturated bonds and H-bonding groups. BTA 5 was used in a few preliminary interaction studies with glucose and ammonium chloride showing interaction with the ammonium ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetospirillum (M.) sp. strain Lusitani, a perchlorate reducing bacteria (PRB), was previously isolated from a wastewater treatment plant and phylogenetic analysis was performed to classify the isolate. The DNA sequence of the genes responsible for perchlorate reduction and chlorite dismutation was determined and a model was designed based on the physiological roles of the proteins involved in the pcr-cld regulon. Chlorite dismutase (Cld) was purified from Magnetospirillum sp. strain Lusitani cells grown in anaerobiosis in the presence of perchlorate. The protein was purified up to electrophoretic grade using HPLC techniques as a 140 kDa homopentamer comprising five ~28 kDa monomers. Steady-state kinetic studies showed that the enzyme follows a Michaelis-Menten model with optimal pH and temperature of 6.0 and 5°C, respectively. The average values for the kinetic constants KM and Vmax were respectively 0.56 mM and 10.2 U, which correspond to a specific activity of 35470 U/mg and a turnover number of 16552 s-1. Cld from M. sp. strain Lusitani is inhibited by the product chloride, but not by dioxygen. Inhibition constants KiC= 460 mM and KiU= 480 mM indicated that sodium chloride is a weak mixed inhibitor of Cld, with a slightly stronger competitive character. The X-ray crystallography structure of M. sp. strain Lusitani Cld was solved at 3.0 Å resolution. In agreement with cofactor content biochemical analysis, the X-ray data showed that each Cld monomer harbors one heme b coordinated by a histidine residue (His188), hydrogen-bonded to a conserved glutamic acid residue (Glu238). The conserved neighboring arginine residue (Arg201) important for substrate positioning, was found in two different conformations in different monomers depending on the presence of the exogenous ligand thiocyanate. UV-Visible and CW-EPR spectroscopies were used to study the effect of redox agents, pH and exogenous ligands on the heme environment.