24 resultados para VELOCITY DISTRIBUTION
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
Trophozoites of Troglocorys cava were detected in all but one of the wild chimpanzee populations from Rubondo Island (Tanzania), with a prevalence ranging between 20% and 78%. However, the ciliate was absent in all captive groups. Prevalence appeared to increase with the number of sequential samples taken from a particular individual and reached 95.5% in wild individuals sampled at least 4 times.
Resumo:
Surpassing the national perspective usually adopted, the authors confirmed the existence of a pattern of population distribution common to the whole Iberian Peninsula in the long run. This pattern is clearly associated with geographical factors. These variables seem to have more weight in explaining changes between 1877/78 and 1940 than in the period from 1940 to 2001. The observation of the cross-border region has shown that proximity to the frontier has not generated any distinct pattern of population density on either side of the boundary line. The spatial coherence of the observed phenomena throughout the Peninsula and of its evolution, independent of the border between states, reinforces the importance of geographic factors in their explanation. At the same time, this verification opens up new issues related to the effect of national political and economic policies.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Perfil de Estruturas
Resumo:
Climate change is emerging as one of the major threats to natural communities of the world’s ecosystems; and biodiversity hotspots, such as Madeira Island, might face a challenging future in the conservation of endangered land snails’ species. With this thesis, progresses have been made in order to properly understand the impact of climate on these vulnerable taxa; and species distribution models coupled with GIS and climate change scenarios have become crucial to understand the relations between species distribution and environmental conditions, identifying threats and determining biodiversity vulnerability. With the use of MaxEnt, important changes in the species suitable areas were obtained. Laurel forest species, highly dependent on precipitation and relative humidity, may face major losses on their future suitable areas, leading to the possible extinction of several endangered species, such as Leiostyla heterodon. Despite the complexity of the biological systems, the intrinsic uncertainty of species distribution models and the lack of information about land snails’ functional traits, this analysis contributed to a pioneer study on the impacts of climate change on endemic species of Madeira Island. The future inclusion of predictions of the effect of climate change on species distribution as part of IUCN assessments could contribute to species prioritizing, promoting specific management actions and maximizing conservation investment.
Resumo:
Field Lab Entrepreneurial Innovative Ventures
Resumo:
The way in which electricity networks operate is going through a period of significant change. Renewable generation technologies are having a growing presence and increasing penetrations of generation that are being connected at distribution level. Unfortunately, a renewable energy source is most of the time intermittent and needs to be forecasted. Current trends in Smart grids foresee the accommodation of a variety of distributed generation sources including intermittent renewable sources. It is also expected that smart grids will include demand management resources, widespread communications and control technologies required to use demand response are needed to help the maintenance in supply-demand balance in electricity systems. Consequently, smart household appliances with controllable loads will be likely a common presence in our homes. Thus, new control techniques are requested to manage the loads and achieve all the potential energy present in intermittent energy sources. This thesis is focused on the development of a demand side management control method in a distributed network, aiming the creation of greater flexibility in demand and better ease the integration of renewable technologies. In particular, this work presents a novel multi-agent model-based predictive control method to manage distributed energy systems from the demand side, in presence of limited energy sources with fluctuating output and with energy storage in house-hold or car batteries. Specifically, here is presented a solution for thermal comfort which manages a limited shared energy resource via a demand side management perspective, using an integrated approach which also involves a power price auction and an appliance loads allocation scheme. The control is applied individually to a set of Thermal Control Areas, demand units, where the objective is to minimize the energy usage and not exceed the limited and shared energy resource, while simultaneously indoor temperatures are maintained within a comfort frame. Thermal Control Areas are overall thermodynamically connected in the distributed environment and also coupled by energy related constraints. The energy split is performed based on a fixed sequential order established from a previous completed auction wherein the bids are made by each Thermal Control Area, acting as demand side management agents, based on the daily energy price. The developed solutions are explained with algorithms and are applied to different scenarios, being the results explanatory of the benefits of the proposed approaches.