18 resultados para Terrestrial invertebrate
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
This dissertation presents an approach aimed at three-dimensional perception’s obstacle detection on all-terrain robots. Given the huge amount of acquired information, the adversities such environments present to an autonomous system and the swiftness, thus required, from each of its navigation decisions, it becomes imperative that the 3-D perceptional system to be able to map obstacles and passageways in the most swift and detailed manner. In this document, a hybrid approach is presented bringing the best of several methods together, combining the lightness of lesser meticulous analyses with the detail brought by more thorough ones. Realizing the former, a terrain’s slope mapping system upon a low resolute volumetric representation of the surrounding occupancy. For the latter’s detailed evaluation, two novel metrics were conceived to discriminate the little depth discrepancies found in between range scanner’s beam distance measurements. The hybrid solution resulting from the conjunction of these two representations provides a reliable answer to traversability mapping and a robust discrimination of penetrable vegetation from that constituting real obstructions. Two distinct robotic platforms offered the possibility to test the hybrid approach on very different applications: a boat, under an European project, the ECHORD Riverwatch, and a terrestrial four-wheeled robot for a national project, the Introsys Robot.
Resumo:
The growing need to patrol and survey large maritime and terrestrial areas increased the need to integrate external sensors on aircraft in order to accomplish those patrols at increasingly higher altitudes, longer range and not depending upon vehicle type. The main focus of this work is to elaborate a practical, simple, effective and efficient methodology for the aircraft modification procedure resulting from the integration of an Elec-tro-Optical/Infra-Red (EO/IR) turret through a support structure. The importance of the devel-opment of a good methodology relies on the correct management of project variables as time, available resources and project complexity. The key is to deliver a proper tool for a project de-sign team that will be used to create a solution that fulfils all technical, non-technical and certi-fication requirements present in this field of transportation. The created methodology is inde-pendent of two main inputs: sensor model and aircraft model definition, and therefore it is in-tended to deliver the results for different projects besides the one that was presented in this work as a case study. This particular case study presents the development of a structure support for FLIR STAR SAPHIRE III turret integration on the front lower fuselage bulkhead (radome) of the LOCKHEED MARTIN C-130 H. Development of the case study focuses on the study of local structural analysis through the use of Finite Element Method (FEM). Development of this Dissertation resulted in a cooperation between Faculty of Science and Technology - Universidade Nova de Lisboa and the company OGMA - Indústria Aeronáutica de Portugal