22 resultados para Statistical parameters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is devoted to study the pre-treatment of lignocellulosic biomass, especially wheat straw, by the application of the acidic ionic liquid (IL) such as 1-butyl-3-methylimidazolium hydrogen sulphate. The ability of this IL to hydrolysis and conversion of biomass was scrutinised. The pre-treatment with hydrogen sulphate-based IL allowed to obtain a liquor rich in hemicellulosic sugars, furans and organic acids, and a solid fraction mainly constituted by cellulose and lignin. Quantitative and qualitative analyses of the produced liquors were made by capillary electrophoresis and high-performance liquid chromatography. Pre-treatment conditions were set to produce xylose or furfural. Specific range of temperatures from 70 to 175 °C and residence times from 20.0 to 163.3 min were studied by fixing parameters such as biomass/IL ratio (10 % (w/w)) and water content (1.25 % (w/w)) in the pre-treatment process. Statistical modelling was applied to maximise the xylose and furfural concentrations. For the purpose of reaction condition comparison the severity factor for studied ionic liquid was proposed and applied in this work. Optimum conditions for xylose production were identified to be at 125 °C and 82.1 min, at which 16.7 % (w/w) xylose yield was attained. Furfural was preferably formed at higher pre-treatment temperatures and longer reaction time (161 °C and 104.5 min) reaching 30.7 % (w/w) maximum yield. The influence of water content on the optimum xylose formation was also studied. Pre-treatments with 5 and 10 % (w/w) water content were performed and an increase of 100 % and 140 % of xylose yield was observed, respectively, while the conversion into furfural maintained unchanged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of devices based on heterostructured thin films of biomolecules conveys a huge contribution on biomedical field. However, to achieve high efficiency of these devices, the storage of water molecules into these heterostructures, in order to maintain the biological molecules hydrated, is mandatory. Such hydrated environment may be achieved with lipids molecules which have the ability to rearrange spontaneously into vesicles creating a stable barrier between two aqueous compartments. Yet it is necessary to find conditions that lead to the immobilization of whole vesicles on the heterostructures. In this work, the conditions that govern the deposition of open and closed liposomes of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (sodium Salt) (DPPG) onto polyelectrolytes cushions prepared by the layer-by-layer (LbL) method were analyzed. Electronic transitions of DPPG molecules as well as absorption coefficients were obtained by vacuum ultraviolet spectroscopy, while the elemental composition of the heterostructures was characterized by x-ray photoelectron spectroscopy (XPS). The presence of water molecules in the films was inferred by XPS and infrared spectroscopy. Quartz crystal microbalance (QCM) data analysis allowed to conclude that, in certain cases, the DPPG adsorbed amount is dependent of the bilayers number already adsorbed. Moreover, the adsorption kinetics curves of both adsorbed amount and surface roughness allowed to determine the kinetics parameters that are related with adsorption processes namely, electrostatic forces, liposomes diffusion and lipids re-organization on surface. Scaling exponents attained from atomic force microscopy images statistical analysis demonstrate that DPPG vesicles adsorption mechanism is ruled by the diffusion Villain model confirming that adsorption is governed by electrostatic forces. The power spectral density treatment enabled a thorough description of the accessible surface of the samples as well as of its inner structural properties. These outcomes proved that surface roughness influences the adsorption of DPPG liposomes onto surfaces covered by a polyelectrolyte layer. Thus, low roughness was shown to induce liposome rupture creating a lipid bilayer while high roughness allows the adsorption of whole liposomes. In addition, the fraction of open liposomes calculated from the normalized maximum adsorbed amounts decreases with the cushion roughness increase, allowing us to conclude that the surface roughness is a crucial variable that governs the adsorption of open or whole liposomes. This conclusion is fundamental for the development of well-designed sensors based on functional biomolecules incorporated in liposomes. Indeed, LbL films composed of polyelectrolytes and liposomes with and without melanin encapsulated were successfully applied to sensors of olive oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In modern society, energy consumption and respect for the environment have become essential aspects of urban planning. The rising demand for alternative sources of energy, coupled with the decline in the construction sector and material usage, gives the idea that the thinking on modern cities, where attention is given to reduced energy consumption, savings, waste recycling and respect for the surrounding environment, is being put into practice. If we examine development of the city over recent centuries, by means of the theories of the most famous and influential urban planners, it is possible to identify the major problems caused by this type of planning. For this reason, in recent urban planning the use of systems of indicators that evaluate and certify land environmentally and energetically guides the master plan toward a more efficient city model. In addition the indicators are targeted on key factors determined by the commissioner or the opportunities the territory itself provides. Due the complexity of the environmental mechanics, the process of design and urban planning has become a challenging issue. The introduction of the indicators system has made it possible to register the life of the process, with a spiral route that allows the design itself to be refined. The aim of this study, built around the creation of a system of urban sustainability indicators that will evaluate highly eco-friendly cities, is to develop a certification system for cities or portions of them. The system will be upgradeable and objective, will employ real data and will be concerned with energy production and consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White Color tuning is an attractive feature that Organic Light Emitting Diodes (OLEDs) offer. Up until now, there hasn’t been any report that mix both color tuning abilities with device stability. In this work, White OLEDs (W-OLEDs) based on a single RGB blend composed of a blue emitting N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) doped with a green emitting Coumarin-153 and a red emitting 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM1) dyes were produced. The final device structure was ITO/Blend/Bathocuproine (BCP)/ Tris(8-hydroxyquinolinato)aluminium (Alq3)/Al with an emission area of 0.25 cm2. The effects of the changing in DCM1’s concentration (from 0.5% to 1% wt.) allowed a tuning in the final white color resulting in devices capable of emitting a wide range of tunes – from cool to warm – while also keeping a low device complexity and a high stabilitty. Moreover, an explanation on the optoelectrical behavior of the device is presented. The best electroluminescense (EL) points toward 160 cd/m2 of brightness and 1.1 cd/A of efficiency, both prompted to being enhanced. An Impedance Spectroscopy (IS) analysis allowed to study both the effects of BCP as a Hole Blocking Layer and as an aging probe of the device. Finally, as a proof of concept, the emission was increased 9 and 64 times proving this structure can be effectively applied for general lighting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO: Introdução - A utilização de células e das suas propriedades para o tratamento das doenças cardiovasculares, é uma promessa para o futuro e talvez a única forma de ultrapassar algumas das insuficiências das terapêuticas atuais. A via de entrega das células mais utilizada na investigação tem sido a intracoronária, ganhando a microcirculação especial relevância, por ser onde ocorre a primeira interação com o tecido nativo. As células estaminais mesenquimais (CEM) têm propriedades que as tornam particularmente aptas para a Terapia Celular, mas as suas dimensões, superiores ao diâmetro dos capilares, tem motivado controvérsia quanto à sua entrega intracoronária. A cardiologia de intervenção tem atualmente técnicas que permitem a avaliação em tempo real e in vivo do estado da microcirculação coronária. A determinação do índice da resistência da microcirculação (IRM) fornece informação sobre a circulação dos pequenos vasos, de forma independente da circulação coronária e do estado hemodinâmico, mas a aplicabilidade clínica deste conhecimento encontra-se ainda por definir. Objectivos Esclarecer o potencial do IRM no estudo dos efeitos do transplante de CEM por via intracoronária. População e Métodos . Estudo pré-clínico com modelo animal (suíno) desenvolvido em 3 fases. Na Primeira Fase foram utilizados 8 animais saudáveis para estudar e validar a técnica de determinação de estudo da microcirculação. Efetuou-se a determinação do IRM com duas doses diferentes de papaverina para a indução da resposta hiperémica máxima (5 e 10 mg) e após a disfunção da microcirculação com injeção intracoronária de microesferas de embozene com 40 μm de diâmetro. Na Segunda Fase foram utilizados 18 animais saudáveis, randomizados em grupo controlo e grupo recetor de 30 x 106 CEM por via intracoronária. Foram avaliados de forma cega o IRM, a pressão aórtica, o fluxo coronário epicárdico e a ocorrência de alterações electrocardiográficas. Na Terceira Fase foram utilizados 18 animais, com enfarte agudo do miocárdio provocado (EAM), randomizados em grupo controlo, grupo recetor de CEM expandidas de forma convencional e grupo recetor de CEM expandidas com metodologia inovadora e de menores dimensões. Foi realizada uma exploração da dose/efeito com infusão faseada de 10 x 106, 15 x 106 e 20 x 106 CEM, com determinação do IRM, da pressão aórtica, do fluxo coronário epicárdico e da ocorrência de alterações eletrocardiográficas. Quatro semanas após a entrega das células foi novamente avaliado o IRM e foi efetuado o estudo anatomopatológico dos animais na procura de evidência de neoangiogénese e de regeneração miocárdica, ou de um efeito positivo da resposta reparadora após o enfarte. Resultados Nas 3 fases todos os animais mantiveram estabilidade hemodinâmica e eletrocardiográfica, com exceção da elevação de ST de V1-V3 verificada após a injeção das microesferas. Na Primeira Fase as duas doses de papaverina induziram uma resposta hiperémica eficaz, sem tradução com significado na determinação do IRM (variação da pressão distal de - 11,4 ± 5 e de - 10,6± 5 mmHg com as doses de 5 e 10 mg respetivamente (p=0,5). Com a injeção das microesferas o IRM teve uma elevação média de 310 ± 190 %, para um valor médio de 41,3 ± 16 U (p = 0,001). Na Segunda Fase não houve diferenças significativas dos parâmetros hemodinâmicos, do fluxo epicárdico e da avaliação eletrocardiográfica entre os dois grupos. O IRM de base foi semelhante e após a infusão intracoronária observou-se uma elevação expressiva do IRM nos animais que receberam células em comparação com o grupo controlo (8,8 U ± 1 vs. 14,2 U ± 1,8, P=0,02) e quanto ao seu valor de base (aumento de 112%, p=0,008). Na terceira Fase não houve novamente diferenças significativas dos parâmetros hemodinâmicos, do fluxo epicárdico e da avaliação eletrocardiográfica entre os três grupos. Houve uma elevação do IRM nos animais que receberam células a partir da 2ª dose (72% nas células convencionai e 108% nas células inovadoras) e que se manteve com a 3ª dose (100% nas células convencionais e 88% nas inovadoras) com significado estatístico em comparação com o grupo controlo (p=0,034 com a 2ªdose e p=0,024 com a 3ª dose). Quatro semanas após a entrega das CEM observou-se a descida do IRM nos dois grupos que receberam células, para valores sobreponíveis aos do grupo controlo e aos valores pós-EAM. Na avaliação anatomopatológica e histológica dos corações explantados não houve diferenças entre os três grupos. Conclusões O IRM permite distinguir alterações da microcirculação coronária motivadas pela entrega intracoronária de CEM, na ausência de alterações de outros parâmetros clínicos da circulação coronária utilizados em tempo real. As alterações do IRM são progressivas e passíveis de avaliar o efeito/dose, embora não tenha sido possível determinar diferenças com os dois tipos de CEM. No nosso modelo a injeção intracoronária não se associou a evidência de efeito benéfico na reparação ou regeneração miocárdica após o EAM.---------------------------- ABSTRACT: ABSTRACT Introduction The use of cells for the treatment of cardiovascular disease is a promise for the future and perhaps the only option to overcome some of the shortcomings of current therapies. The strategy for the delivery of cells most often used in current research has been the intracoronary route and due to this microcirculation gains special relevance, mainly because it is the first interaction site of transplanted cells with the native tissue. Mesenchymal stem cells (MSC) have properties that make them suitable for Cell Therapy, but its dimensions, larger than the diameter of capillaries, have prompted controversy about the safety of intracoronary delivery. The interventional cardiology currently has techniques that allow for real-time and in vivo assessment of coronary microcirculation state. The determination of the index of microcirculatory resistance index (IMR) provides information about small vessels, independently of the coronary circulation and hemodynamic status, but the clinical applicability of this knowledge is yet to be defined. Objectives To clarify the potential use of IMR in the study of the effects of MSC through intracoronary transplantation. Population and Methods Preclinical study with swine model developed in three phases. In Phase One 8 healthy animals were used to study and validate the IMR assessment in our animal model. IMR was assessed with two different doses of papaverine for inducing the maximal hyperaemic response (5 and 10 mg) and microcirculation dysfunction was achieved after intracoronary injection with embozene microspheres with 40 μm in diameter. In Phase Two we randomized 18 healthy animals divided between the control group and the one receiving 30 x 106 MSC through an intracoronary infusion. There we blindly evaluated IMR, the aortic pressure, the epicardial coronary flow and the occurrence of ECG changes. In Phase Three we used 18 animals with a provoked acute myocardial infarction (AMI), randomized into a control group, a MSC expanded conventionally receiver group and a MSC expanded with an innovative methodology receiver group. There was a stepwise infusion with doses of 10 x 106, 15 x 106 and 20 x 106 MSC with determination of IMR, the aortic pressure, the epicardial coronary flow and occurrence of electrocardiographic abnormalities. Four weeks after cell delivery we again measured the IMR and proceeded with the pathological study of animals in the search for evidence of neoangiogenesis and myocardial regeneration, or a positive effect in the reparative response following the infarction. Results All animals remained hemodynamically stable and with no electrocardiographic abnormalities, except for the ST elevation in V1-V3 observed after injection of the microspheres. In Phase One the two doses of papaverine achieved an hyperemic and effective response without significant differences in IMR (variation of the distal pressure -11.4 ± 5 and -10.6 ± 5 mmHg with the doses of 5 and 10 mg respectively (p = 0.5). With the injection of the microspheres the IMR had an average increase of 310 ± 190% for an average value of 41.3 ± 16 U (p = 0.001). In the second phase there were no significant differences in hemodynamic parameters, epicardial flow and electrocardiographic assessment between the two groups. The baseline IMR was similar and after intracoronary infusion there was a significant increase in animals receiving cells compared with the control group (8.8 ± U 1 vs. 14.2 ± 1.8, p = 0.02) and with their baseline (112% increase, p = 0.008). In the third phase again there were no significant differences in hemodynamic parameters, the epicardial flow and electrocardiographic evaluation between the three groups. There was a significant increase in IMR in animals that received cells from the 2nd dose (72% in conventional cells and 108% in the innovative cells) that remained with the 3rd dose (100% in conventional cells and 88% in the innovative) with statistical significance compared with the control group (p = 0.034 with 2nd dose, p = 0.024 with 3rd dose). Four weeks after delivery of the MSC we observed the fall of the IMR in the two groups that received cells with values overlapping those of the control group. In pathological and histological evaluation of removed hearts there were no differences among the three groups. Conclusions The IMR allows for the differentiation of changes in coronary microcirculation motivated by intracoronary delivery of MSC in the absence of modification in other clinical parameters. IMR changes are progressive and enable the evaluation of the effect / dose, though it has not been possible to determine differences in the two types of MSC. In our model, intracoronary injection of MSC was not associated with evidence of repair or myocardial regeneration after AMI.