22 resultados para Signal Molecules


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin-lattice Relaxation, self-Diffusion coefficients and Residual Dipolar Couplings (RDC’s) are the basis of well established Nuclear Magnetic Resonance techniques for the physicochemical study of small molecules (typically organic compounds and natural products with MW < 1000 Da), as they proved to be a powerful and complementary source of information about structural dynamic processes in solution. The work developed in this thesis consists in the application of the earlier-mentioned NMR techniques to explore, analyze and systematize patterns of the molecular dynamic behavior of selected small molecules in particular experimental conditions. Two systems were chosen to investigate molecular dynamic behavior by these techniques: the dynamics of ion-pair formation and ion interaction in ionic liquids (IL) and the dynamics of molecular reorientation when molecules are placed in oriented phases (alignment media). The application of NMR spin-lattice relaxation and self-diffusion measurements was applied to study the rotational and translational molecular dynamics of the IL: 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]. The study of the cation-anion dynamics in neat and IL-water mixtures was systematically investigated by a combination of multinuclear NMR relaxation techniques with diffusion data (using by H1, C13 and F19 NMR spectroscopy). Spin-lattice relaxation time (T1), self-diffusion coefficients and nuclear Overhauser effect experiments were combined to determine the conditions that favor the formation of long lived [BMIM][BF4] ion-pairs in water. For this purpose and using the self-diffusion coefficients of cation and anion as a probe, different IL-water compositions were screened (from neat IL to infinite dilution) to find the conditions where both cation and anion present equal diffusion coefficients (8% water fraction at 25 ºC). This condition as well as the neat IL and the infinite dilution were then further studied by 13C NMR relaxation in order to determine correlation times (c) for the molecular reorientational motion using a mathematical iterative procedure and experimental data obtained in a temperature range between 273 and 353 K. The behavior of self-diffusion and relaxation data obtained in our experiments point at the combining parameters of molar fraction 8 % and temperature 298 K as the most favorable condition for the formation of long lived ion-pairs. When molecules are subjected to soft anisotropic motion by being placed in some special media, Residual Dipolar Couplings (RDCs), can be measured, because of the partial alignment induced by this media. RDCs are emerging as a powerful routine tool employed in conformational analysis, as it complements and even outperforms the approaches based on the classical NMR NOE or J3 couplings. In this work, three different alignment media have been characterized and evaluated in terms of integrity using 2H and 1H 1D-NMR spectroscopy, namely the stretched and compressed gel PMMA, and the lyotropic liquid crystals CpCl/n-hexanol/brine and cromolyn/water. The influence that different media and degrees of alignment have on the dynamic properties of several molecules was explored. Different sized sugars were used and their self-diffusion was determined as well as conformation features using RDCs. The results obtained indicate that no influence is felt by the small molecules diffusion and conformational features studied within the alignment degree range studied, which was the 3, 5 and 6 % CpCl/n-hexanol/brine for diffusion, and 5 and 7.5 % CpCl/n-hexanol/brine for conformation. It was also possible to determine that the small molecules diffusion verified in the alignment media presented close values to the ones observed in water, reinforcing the idea of no conditioning of molecular properties in such media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic Liquids (ILs) belong to a class of compounds with unusual properties: very low vapour pressure; high chemical and thermal stability and the ability to dissolve a wide range of substances. A new field in research is evaluating the possibility to use natural chiral biomolecules for the preparation of chiral ionic liquids (CILs). This important challenge in synthetic chemistry can open new avenues of research in order to avoid some problems related with the intrinsic biodegradability and toxicity associated to conventional ILs. The research work developed aimed for the synthesis of CILs, their characterization and possible applications, based on biological moieties used either as chiral cations or anions, depending on the synthetic manipulation of the derivatives. Overall, a total of 28 organic salts, including CILs were synthesized: 9 based on L-cysteine derivatives, 12 based on L-proline, 3 based on nucleosides and 4 based on nucleotides. All these new CILs were completely characterized and their chemical and physical properties were evaluated. Some CILs based on L-cysteine have been applied for discrimination processes, including resolution of racemates and as a chiral catalyst for asymmetric Aldol condensation. L-proline derived CILs were also studied as chiral catalysts for Michael reaction. In parallel, the interactions of macrocyclic oligosugars called cyclodextrins (CDs) with several ILs were studied. It was possible to improve the solubility of CDs in water and serum. Additionally, fatty acids and steroids showed an increase in water solubility when ILs-CDs systems were used. The development of efficient and selective ILs-CDs systems is indispensable to expand the range of their applications in host-guest interactions, drug delivery systems or catalytic reactions. Novel salts derived from nucleobases were used in order to enhance the fluorescence in aqueous solution. Additionally, preliminary studies regarding ethyl lactate as an alternative solvent for asymmetric organocatalysis were performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by motor neurons degeneration, which reduces muscular force, being very difficult to diagnose. Mathematical methods are used in order to analyze the surface electromiographic signal’s dynamic behavior (Fractal Dimension (FD) and Multiscale Entropy (MSE)), evaluate different muscle group’s synchronization (Coherence and Phase Locking Factor (PLF)) and to evaluate the signal’s complexity (Lempel-Ziv (LZ) techniques and Detrended Fluctuation Analysis (DFA)). Surface electromiographic signal acquisitions were performed in upper limb muscles, being the analysis executed for instants of contraction for ipsilateral acquisitions for patients and control groups. Results from LZ, DFA and MSE analysis present capability to distinguish between the patient group and the control group, whereas coherence, PLF and FD algorithms present results very similar for both groups. LZ, DFA and MSE algorithms appear then to be a good measure of corticospinal pathways integrity. A classification algorithm was applied to the results in combination with extracted features from the surface electromiographic signal, with an accuracy percentage higher than 70% for 118 combinations for at least one classifier. The classification results demonstrate capability to distinguish members between patients and control groups. These results can demonstrate a major importance in the disease diagnose, once surface electromyography (sEMG) may be used as an auxiliary diagnose method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of devices based on heterostructured thin films of biomolecules conveys a huge contribution on biomedical field. However, to achieve high efficiency of these devices, the storage of water molecules into these heterostructures, in order to maintain the biological molecules hydrated, is mandatory. Such hydrated environment may be achieved with lipids molecules which have the ability to rearrange spontaneously into vesicles creating a stable barrier between two aqueous compartments. Yet it is necessary to find conditions that lead to the immobilization of whole vesicles on the heterostructures. In this work, the conditions that govern the deposition of open and closed liposomes of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (sodium Salt) (DPPG) onto polyelectrolytes cushions prepared by the layer-by-layer (LbL) method were analyzed. Electronic transitions of DPPG molecules as well as absorption coefficients were obtained by vacuum ultraviolet spectroscopy, while the elemental composition of the heterostructures was characterized by x-ray photoelectron spectroscopy (XPS). The presence of water molecules in the films was inferred by XPS and infrared spectroscopy. Quartz crystal microbalance (QCM) data analysis allowed to conclude that, in certain cases, the DPPG adsorbed amount is dependent of the bilayers number already adsorbed. Moreover, the adsorption kinetics curves of both adsorbed amount and surface roughness allowed to determine the kinetics parameters that are related with adsorption processes namely, electrostatic forces, liposomes diffusion and lipids re-organization on surface. Scaling exponents attained from atomic force microscopy images statistical analysis demonstrate that DPPG vesicles adsorption mechanism is ruled by the diffusion Villain model confirming that adsorption is governed by electrostatic forces. The power spectral density treatment enabled a thorough description of the accessible surface of the samples as well as of its inner structural properties. These outcomes proved that surface roughness influences the adsorption of DPPG liposomes onto surfaces covered by a polyelectrolyte layer. Thus, low roughness was shown to induce liposome rupture creating a lipid bilayer while high roughness allows the adsorption of whole liposomes. In addition, the fraction of open liposomes calculated from the normalized maximum adsorbed amounts decreases with the cushion roughness increase, allowing us to conclude that the surface roughness is a crucial variable that governs the adsorption of open or whole liposomes. This conclusion is fundamental for the development of well-designed sensors based on functional biomolecules incorporated in liposomes. Indeed, LbL films composed of polyelectrolytes and liposomes with and without melanin encapsulated were successfully applied to sensors of olive oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All life forms need to monitor carbon and energy availability to survive and this is especially true for plants which must integrate unavoidable environmental conditions with metabolism for cellular homeostasis maintenance. Sugars, in the heart of metabolism, are now recognized as crucial signaling molecules that translate those conditions. One such signal is trehalose 6- phosphate (T6P), a phosphorylated dimer of glucose molecules which levels correlate well with those of sucrose (Suc). Central integrators of stress and energy regulation include the conserved plant Snf1-related kinase1 (SnRK1) which respond to low cellular energy levels by up-regulating energy conserving and catabolic metabolism and down-regulating energy consuming processes. In 2009 T6P was shown to inhibit SnRK1. The in vitro inhibition of SnRK1 by T6P was confirmed in vivo through the observation that genes normally induced by SnRK1 were repressed by T6P and vice-versa, promoting growth processes. These observations provided a model for the regulation of growth by sugar.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of a set of gases relevant within the context of biomolecules and technologically relevant molecules under the interaction of low-energy electrons was studied in an effort to contribute to the understanding of the underlying processes yielding negative ion formation. The results are relevant within the context of damage to living material exposed to energetic radiation, to the role of dopants in the ion-molecule chemistry processes, to Electron Beam Induced Deposition (EBID) and Ion Beam Induced Deposition (IBID) techniques. The research described in this thesis addresses dissociative electron attachment (DEA) and electron transfer studies involving experimental setups from the University of Innsbruck, Austria and Universidade Nova de Lisboa, Portugal, respectively. This thesis presents DEA studies, obtained by a double focusing mass spectrometer, of dimethyl disulphide (C2H6S2), two isomers, enflurane and isoflurane (C3F5Cl5) and two chlorinated ethanes, pentachloroethane (C2HCl5) and hexachloroethane (C2Cl6), along with quantum chemical calculations providing information on the molecular orbitals as well as thermochemical thresholds of anion formation for enflurane, isoflurane, pentachloroethane and hexachloroethane. The experiments represent the most accurate DEA studies to these molecules, with significant differences from previous work reported in the literature. As far as electron transfer studies are concerned, negative ion formation in collisions of neutral potassium atoms with N1 and N3 methylated pyrimidine molecules were obtained by time-of-flight mass spectrometry (TOF). The results obtained allowed to propose concerted mechanisms for site and bond selective excision of bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Electrohysterogram (EHG) is a new instrument for pregnancy monitoring. It measures the uterine muscle electrical signal, which is closely related with uterine contractions. The EHG is described as a viable alternative and a more precise instrument than the currently most widely used method for the description of uterine contractions: the external tocogram. The EHG has also been indicated as a promising tool in the assessment of preterm delivery risk. This work intends to contribute towards the EHG characterization through the inventory of its components which are: • Contractions; • Labor contractions; • Alvarez waves; • Fetal movements; • Long Duration Low Frequency Waves; The instruments used for cataloging were: Spectral Analysis, parametric and non-parametric, energy estimators, time-frequency methods and the tocogram annotated by expert physicians. The EHG and respective tocograms were obtained from the Icelandic 16-electrode Electrohysterogram Database. 288 components were classified. There is not a component database of this type available for consultation. The spectral analysis module and power estimation was added to Uterine Explorer, an EHG analysis software developed in FCT-UNL. The importance of this component database is related to the need to improve the understanding of the EHG which is a relatively complex signal, as well as contributing towards the detection of preterm birth. Preterm birth accounts for 10% of all births and is one of the most relevant obstetric conditions. Despite the technological and scientific advances in perinatal medicine, in developed countries, prematurity is the major cause of neonatal death. Although various risk factors such as previous preterm births, infection, uterine malformations, multiple gestation and short uterine cervix in second trimester, have been associated with this condition, its etiology remains unknown [1][2][3].