22 resultados para Polyethylene oxides
Resumo:
Phenolic acids are aromatic secondary plant metabolites, widely spread throughout the plant kingdom. Due to their biological and pharmacological properties, they have been playing an important role in phytotherapy and consequently techniques for their separation and purification are in need. This thesis aims at exploring new sustainable separation processes based on ionic liquids (ILs) in the extraction of biologically active phenolic acids. For that purpose, three phenolic acids with similar chemical structures were selected: cinnamic acid, p-coumaric acid and caffeic acid. In the last years, it has been shown that ionic liquids-based aqueous biphasic systems (ABSs) are valid alternatives for the extraction, recovery and purification of biomolecules when compared to conventional ABS or extractions carried out with organic solvents. In particular, cholinium-based ILs represent a clear step towards a greener chemistry, while providing means for the implementation of efficient techniques for the separation and purification of biomolecules. In this work, ABSs were implemented using cholinium carboxylate ILs using either high charge density inorganic salt (K3PO4) or polyethylene glycol (PEG) to promote the phase separation of aqueous solutions containing three different phenolic acids. These systems allow for the evaluation of effect of chemical structure of the anion on the extraction efficiency. Only one imidazolium-based IL was used in order to establish the effect of the cation chemical structure. The selective extraction of one single acid was also researched. Overall, it was observed that phenolic acids display very complex behaviours in aqueous solutions, from dimerization to polymerization and also hetero-association are quite frequent phenomena, depending on the pH conditions. These phenomena greatly hinder the correct quantification of these acids in solution.
Resumo:
Polymeric nanoparticles (PNPs) have attracted considerable interest over the last few years due to their unique properties and behaviors provided by their small size. Such materials could be used in a wide range of applications such as diagnostics and drug delivery. Advantages of PNPs include controlled release, protection of drug molecules and its specific targeting, with concomitant increasing of the therapeutic index. In this work, novel sucrose and cholic acid based PNPs were prepared from different polymers, namely polyethylene glycol (PEG), poly(D,L-lactic-co-glycolic acid) (PLGA) and PLGA-co-PEG copolymer. In these PNP carriers, cholic acid will act as a drug incorporation site and the carbohydrate as targeting moiety. The uptake of nanoparticles into cells usually involves endocytotic processes, which depend primarily on their size and surface characteristics. These properties can be tuned by the nanoparticle preparation method. Therefore, the nanoprecipitation and the emulsion-solvent evaporation method were applied to prepare the PNPs. The influence of various parameters, such as concentration of the starting solution, evaporation method and solvent properties on the nanoparticle size, size distribution and morphology were studied. The PNPs were characterized by using atomic force microscopy (AFM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) to assess their size distribution and morphology. The PNPs obtained by nanoprecipitation ranged in size between 90 nm and 130 nm with a very low polydispersity index (PDI < 0.3). On the other hand, the PNPs produced by the emulsion-solvent evaporation method revealed particle sizes around 300 nm with a high PDI value. More detailed information was found in AFM and SEM images, which demonstrated that all these PNPs were regularly spherical. ζ-potential measurements were satisfactory and evidenced the importance of sucrose moiety on the polymeric system, which was responsible for the obtained negative surface charge, providing colloidal stability. The results of this study show that sucrose and cholic acid based polymeric conjugates can be successfully used to prepare PNPs with tunable physicochemical characteristics. In addition, it provides novel information about the materials used and the methods applied. It is hoped that this work will be useful for the development of novel carbohydrate based nanoparticles for biomedical applications, specifically for targeted drug delivery.
Resumo:
The growing demand for materials and devices with new functionalities led to the increased inter-est in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by sol-vothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the perfor-mance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The dep-osition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The produced transistors work at low potential and with improved ON-OFF current ratio, up to 6 orders of mag-nitude. To summarize, the low temperatures used in the production of the devices are compatible with flexible substrates and additionally, the low cost of the techniques involved can be adapted for disposable devices.
Resumo:
Understanding how the brain works has been one of the greatest goals of mankind. This desire fuels the scientific community to pursue novel techniques able to acquire the complex information produced by the brain at any given moment. The Electrocorticography (ECoG) is one of those techniques. By placing conductive electrodes over the dura, or directly over the cortex, and measuring the electric potential variation, one can acquire information regarding the activation of those areas. In this work, transparent ECoGs, (TrECoGs) are fabricated through thin film deposition of the Transparent Conductive Oxides (TCOs) Indium-Zinc-Oxide (IZO) and Gallium-Zinc-Oxide (GZO). Five distinct devices have been fabricated via shadow masking and photolithography. The data acquired and presented in this work validates the TrECoGs fabricated as efficient devices for recording brain activity. The best results were obtained for the GZO- based TrECoG, which presented an average impedance of 36 kΩ at 1 kHz for 500 μm diameter electrodes, a transmittance close to 90% for the visible spectrum and a clear capability to detect brain signal variations. The IZO based devices also presented high transmittance levels (90%), but with higher impedances, which ranged from 40 kΩ to 100 kΩ.
Resumo:
The quasi two-dimensional electron gas (q2DEG) hosted in the interface of an epitaxially grown lanthanum aluminate (LaAlO3) thin film with a TiO2-termi-nated strontium titanate (SrTiO3) substrate (001) has been massively studied in the last few years. The confinement of mobile electrons to within a few nanome-ters from the interface, superconductive behavior at low temperatures and elec-tron mobility exceeding 1000 cm2/(V.s) make this system an interesting candi-date to explore the physics of spin injection and transport. However, due to the critical thickness for conduction of 4 unit cells (uc) of LaAlO3, a high tunneling resistance hampers electrical access to the q2DEG, preventing proper injection of spin polarized current. Recently, our group found that depositing a thin overlayer of Co on LaAlO3 reduces the critical thickness, enabling conduction with only 1 uc of LaAlO3. Two scenarios arise to explain this phenomenon: a pinning of the Fermi level in the metal, inducing charge transfer in the SrTiO3; the creation of oxygen vacancies at the interface between LaAlO3 and the metal, leading to an n-type doping of the SrTiO3. In this dissertation, we will report on magnetotransport of metal/LaAlO3/SrTiO3 (metal: Ti, Ta, Co, Py, Au, Pt, Pd) heterostructures with 2 uc of LaAlO3 studied at low temperatures (2 K) and high magnetic fields (9 T). We have analyzed the transport properties of the gas, namely, the carrier concen-tration, mobility and magnetotransport regime and we will discuss the results in the light of the two scenarios mentioned above.
Resumo:
Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.
Resumo:
Contemporary painting places, and will continue to place, several questions about its meaning, its chemical nature, its durability and the best way to preserve it. This research aims at putting together comprehensive data on vinyl based paints, including their components, their properties, their aging behavior and their response to selected cleaning products. In this project degradation mechanisms of vinyl binders and formulations used in the 20th and 21st century were studied. Stability over time of selected vinyl polymers was assessed through natural indoor and artificially aging. The objective was to enhance knowledge and understanding of vinyl emulsion formulations and their performance over time. Overall conservation state of pictorial layers namely, adhesion, cohesion and discoloration of selected case studies from the Portuguese artist Julião Sarmento (b.1948) was correlated with the observed molecular level changes studied in laboratory experiments. Sarmento’s paintings were chosen due to conservation concerns (discoloration) on some of his works from the 90’s. Besides, research was carried out to start increasing the knowledge of what can be expected of PVAc based paints in terms of response to conservation treatments namely, surface cleaning. Artificial aging showed that the most recent formulations which are based on a poly(vinyl acetate), poly(vinyl chloride) and polyethylene terpolymer are less stable when compared to some homopolymer formulations. From the four pigments studied, titanium dioxide rutile and a carbon based black proved to be stabilizers for both types of polymer. The mixture lithopone plus calcium carbonate has showed to have a photocatalytic effect on the binders. The studied paintings showed to be in an overall good state of conservation except for the paintings created in the 90’s with white glue and a mixture of white lithoponeand calcium carbonate. Discoloration of this white paint seems to be irreversible and ongoing and is still a major concern. The disapearance of the plasticizer was the only change detected. The current works created by Sarmento are expected to be more stable as they were painted using the rutile titanium dioxide. Immersion/cleaning tests showed that vinyl based paints can be susceptible to water and organic solvents like ethanol as some evidences point to the removal/diffusion of additives from the paint. The observations made point to the need to further proceed in this research field.