38 resultados para Multi-objective optimization techniques
Resumo:
Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, for the degree of Doctor of Philosophy in Biochemistry
Resumo:
The aim of this contribution is to extend the techniques of composite materials design to non-linear material behaviour and apply it for design of new materials for passive vibration control. As a first step a computational tool allowing determination of macroscopic optimized one-dimensional isolator behaviour was developed. Voigt, Maxwell, standard and more complex material models can be implemented. Objective function considers minimization of the initial reaction and/or displacement peak as well as minimization of the steady-state amplitude of reaction and/or displacement. The complex stiffness approach is used to formulate the governing equations in an efficient way. Material stiffness parameters are assumed as non-linear functions of the displacement. The numerical solution is performed in the complex space. The steady-state solution in the complex space is obtained by an iterative process based on the shooting method which imposes the conditions of periodicity with respect to the known value of the period. Extension of the shooting method to the complex space is presented and verified. Non-linear behaviour of material parameters is then optimized by generic probabilistic meta-algorithm, simulated annealing. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Procedure is programmed in MATLAB environment.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química, especialidade de Engenharia Bioquímica
Resumo:
Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertation to obtain the degree of Doctor of Philosophy in Biomedical Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Optimization is a very important field for getting the best possible value for the optimization function. Continuous optimization is optimization over real intervals. There are many global and local search techniques. Global search techniques try to get the global optima of the optimization problem. However, local search techniques are used more since they try to find a local minimal solution within an area of the search space. In Continuous Constraint Satisfaction Problems (CCSP)s, constraints are viewed as relations between variables, and the computations are supported by interval analysis. The continuous constraint programming framework provides branch-and-prune algorithms for covering sets of solutions for the constraints with sets of interval boxes which are the Cartesian product of intervals. These algorithms begin with an initial crude cover of the feasible space (the Cartesian product of the initial variable domains) which is recursively refined by interleaving pruning and branching steps until a stopping criterion is satisfied. In this work, we try to find a convenient way to use the advantages in CCSP branchand- prune with local search of global optimization applied locally over each pruned branch of the CCSP. We apply local search techniques of continuous optimization over the pruned boxes outputted by the CCSP techniques. We mainly use steepest descent technique with different characteristics such as penalty calculation and step length. We implement two main different local search algorithms. We use “Procure”, which is a constraint reasoning and global optimization framework, to implement our techniques, then we produce and introduce our results over a set of benchmarks.
Resumo:
Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.
Resumo:
Future broadband wireless systems are expected to cope with severely time dispersive channels, due to multi-path signal propagation between the transmitter and the receiver while having high power and spectral efficiency. Thus, advanced Frequency Domain Equalization techniques are required. The implementation complexity in mobile terminals should be as low as possible to achieve highest possible efficiency. Therefore, most of the signal processing requirements will be shifted to the base station and we will employ signals compatible with an efficient, grossly nonlinear power amplification. For this reason, we will consider offset modulation signals with quasi-constant envelope and develop receivers that will obtain good BER performance. However, these signals require a bandwidth significantly above the Nyquist rate, which can be reduced by an overlap of different frequency channels.
Resumo:
RESUMO: O cancro de mama e o mais frequente diagnoticado a indiv duos do sexo feminino. O conhecimento cientifico e a tecnologia tem permitido a cria ção de muitas e diferentes estrat egias para tratar esta patologia. A Radioterapia (RT) est a entre as diretrizes atuais para a maioria dos tratamentos de cancro de mama. No entanto, a radia ção e como uma arma de dois canos: apesar de tratar, pode ser indutora de neoplasias secund arias. A mama contralateral (CLB) e um orgão susceptivel de absorver doses com o tratamento da outra mama, potenciando o risco de desenvolver um tumor secund ario. Nos departamentos de radioterapia tem sido implementadas novas tecnicas relacionadas com a radia ção, com complexas estrat egias de administra ção da dose e resultados promissores. No entanto, algumas questões precisam de ser devidamente colocadas, tais como: E seguro avançar para tecnicas complexas para obter melhores indices de conformidade nos volumes alvo, em radioterapia de mama? O que acontece aos volumes alvo e aos tecidos saudaveis adjacentes? Quão exata e a administração de dose? Quais são as limitações e vantagens das técnicas e algoritmos atualmente usados? A resposta a estas questões e conseguida recorrendo a m etodos de Monte Carlo para modelar com precisão os diferentes componentes do equipamento produtor de radia ção(alvos, ltros, colimadores, etc), a m de obter uma descri cão apropriada dos campos de radia cão usados, bem como uma representa ção geometrica detalhada e a composição dos materiais que constituem os orgãos e os tecidos envolvidos. Este trabalho visa investigar o impacto de tratar cancro de mama esquerda usando diferentes tecnicas de radioterapia f-IMRT (intensidade modulada por planeamento direto), IMRT por planeamento inverso (IMRT2, usando 2 feixes; IMRT5, com 5 feixes) e DCART (arco conformacional dinamico) e os seus impactos em irradia ção da mama e na irradia ção indesejada dos tecidos saud aveis adjacentes. Dois algoritmos do sistema de planeamento iPlan da BrainLAB foram usados: Pencil Beam Convolution (PBC) e Monte Carlo comercial iMC. Foi ainda usado um modelo de Monte Carlo criado para o acelerador usado (Trilogy da VARIAN Medical Systems), no c odigo EGSnrc MC, para determinar as doses depositadas na mama contralateral. Para atingir este objetivo foi necess ario modelar o novo colimador multi-laminas High- De nition que nunca antes havia sido simulado. O modelo desenvolvido est a agora disponí vel no pacote do c odigo EGSnrc MC do National Research Council Canada (NRC). O acelerador simulado foi validado com medidas realizadas em agua e posteriormente com c alculos realizados no sistema de planeamento (TPS).As distribui ções de dose no volume alvo (PTV) e a dose nos orgãos de risco (OAR) foram comparadas atrav es da an alise de histogramas de dose-volume; an alise estati stica complementar foi realizadas usando o software IBM SPSS v20. Para o algoritmo PBC, todas as tecnicas proporcionaram uma cobertura adequada do PTV. No entanto, foram encontradas diferen cas estatisticamente significativas entre as t ecnicas, no PTV, nos OAR e ainda no padrão da distribui ção de dose pelos tecidos sãos. IMRT5 e DCART contribuem para maior dispersão de doses baixas pelos tecidos normais, mama direita, pulmão direito, cora cão e at e pelo pulmão esquerdo, quando comparados com as tecnicas tangenciais (f-IMRT e IMRT2). No entanto, os planos de IMRT5 melhoram a distribuição de dose no PTV apresentando melhor conformidade e homogeneidade no volume alvo e percentagens de dose mais baixas nos orgãos do mesmo lado. A t ecnica de DCART não apresenta vantagens comparativamente com as restantes t ecnicas investigadas. Foram tamb em identi cadas diferen cas entre os algoritmos de c alculos: em geral, o PBC estimou doses mais elevadas para o PTV, pulmão esquerdo e cora ção, do que os algoritmos de MC. Os algoritmos de MC, entre si, apresentaram resultados semelhantes (com dferen cas at e 2%). Considera-se que o PBC não e preciso na determina ção de dose em meios homog eneos e na região de build-up. Nesse sentido, atualmente na cl nica, a equipa da F sica realiza medi ções para adquirir dados para outro algoritmo de c alculo. Apesar de melhor homogeneidade e conformidade no PTV considera-se que h a um aumento de risco de cancro na mama contralateral quando se utilizam t ecnicas não-tangenciais. Os resultados globais dos estudos apresentados confirmam o excelente poder de previsão com precisão na determinação e c alculo das distribui ções de dose nos orgãos e tecidos das tecnicas de simulação de Monte Carlo usados.---------ABSTRACT:Breast cancer is the most frequent in women. Scienti c knowledge and technology have created many and di erent strategies to treat this pathology. Radiotherapy (RT) is in the actual standard guidelines for most of breast cancer treatments. However, radiation is a two-sword weapon: although it may heal cancer, it may also induce secondary cancer. The contralateral breast (CLB) is a susceptible organ to absorb doses with the treatment of the other breast, being at signi cant risk to develop a secondary tumor. New radiation related techniques, with more complex delivery strategies and promising results are being implemented and used in radiotherapy departments. However some questions have to be properly addressed, such as: Is it safe to move to complex techniques to achieve better conformation in the target volumes, in breast radiotherapy? What happens to the target volumes and surrounding healthy tissues? How accurate is dose delivery? What are the shortcomings and limitations of currently used treatment planning systems (TPS)? The answers to these questions largely rely in the use of Monte Carlo (MC) simulations using state-of-the-art computer programs to accurately model the di erent components of the equipment (target, lters, collimators, etc.) and obtain an adequate description of the radiation elds used, as well as the detailed geometric representation and material composition of organs and tissues. This work aims at investigating the impact of treating left breast cancer using di erent radiation therapy (RT) techniques f-IMRT (forwardly-planned intensity-modulated), inversely-planned IMRT (IMRT2, using 2 beams; IMRT5, using 5 beams) and dynamic conformal arc (DCART) RT and their e ects on the whole-breast irradiation and in the undesirable irradiation of the surrounding healthy tissues. Two algorithms of iPlan BrainLAB TPS were used: Pencil Beam Convolution (PBC)and commercial Monte Carlo (iMC). Furthermore, an accurate Monte Carlo (MC) model of the linear accelerator used (a Trilogy R VARIANR) was done with the EGSnrc MC code, to accurately determine the doses that reach the CLB. For this purpose it was necessary to model the new High De nition multileaf collimator that had never before been simulated. The model developed was then included on the EGSnrc MC package of National Research Council Canada (NRC). The linac was benchmarked with water measurements and later on validated against the TPS calculations. The dose distributions in the planning target volume (PTV) and the dose to the organs at risk (OAR) were compared analyzing dose-volume histograms; further statistical analysis was performed using IBM SPSS v20 software. For PBC, all the techniques provided adequate coverage of the PTV. However, statistically significant dose di erences were observed between the techniques, in the PTV, OAR and also in the pattern of dose distribution spreading into normal tissues. IMRT5 and DCART spread low doses into greater volumes of normal tissue, right breast, right lung, heart and even the left lung than tangential techniques (f-IMRT and IMRT2). However,IMRT5 plans improved distributions for the PTV, exhibiting better conformity and homogeneity in target and reduced high dose percentages in ipsilateral OAR. DCART did not present advantages over any of the techniques investigated. Di erences were also found comparing the calculation algorithms: PBC estimated higher doses for the PTV, ipsilateral lung and heart than the MC algorithms predicted. The MC algorithms presented similar results (within 2% di erences). The PBC algorithm was considered not accurate in determining the dose in heterogeneous media and in build-up regions. Therefore, a major e ort is being done at the clinic to acquire data to move from PBC to another calculation algorithm. Despite better PTV homogeneity and conformity there is an increased risk of CLB cancer development, when using non-tangential techniques. The overall results of the studies performed con rm the outstanding predictive power and accuracy in the assessment and calculation of dose distributions in organs and tissues rendered possible by the utilization and implementation of MC simulation techniques in RT TPS.
Resumo:
This thesis reports the work performed in the optimization of deposition parameters of Multi – Walled Carbon Nanotubes (MWCNT) targeting the development of a Field Effect Transistors (FET) on paper substrates. The CNTs were dispersed in a water solution with sodium dodecyl sulphate (SDS) through ultrasonication, ultrasonic bath and a centrifugation to remove the supernatant and have a homogeneous solution. Several deposition tests were performed using different types of CNTs, dis-persants, papers substrates and deposition techniques, such as spray coating and inkjet printing. The characterization of CNTs was made by Scanning Electron Microscopy (SEM) and Hall Effect. The most suitable CNT coatings able to be used as semiconductor in FETs were deposited by spray coat-ing on a paper substrate with hydrophilic nanoporous surface (FS2) at 100 ºC, 4 bar, 10 cm height, 5 second of deposition time and 90 seconds of drying between steps (4 layers of CNTs were deposited). Planar electrolyte gated FETs were produced with these layers using gold-nickel gate, source and drain electrodes. Despite the small current modulation (Ion/Ioff ratio of 1.8) one of these devices have p-type conduction with a field effect mobility of 1.07 cm2/V.s.
Resumo:
Field Lab of Entrepreneurial Innovative Ventures