24 resultados para MOLYBDENA-ALUMINA CATALYSTS
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Perfil de Construção
Resumo:
A integração da camada dieléctrica de AlOx em TFTs com ZTO, também produzido por solução, originou uma publicação científica que foi recentemente aceite numa revista da especialidade: R. Branquinho, D. Salgueiro, A. Santa, A. Kiazadeh, P. Barquinha, L. Pereira, R. Martins and E. Fortunato, Towards environmental friendly solution-based ZTO/AlOx TFTs, Semiconductor Science and Technology, in press.
Resumo:
Ionic Liquids (ILs) belong to a class of compounds with unusual properties: very low vapour pressure; high chemical and thermal stability and the ability to dissolve a wide range of substances. A new field in research is evaluating the possibility to use natural chiral biomolecules for the preparation of chiral ionic liquids (CILs). This important challenge in synthetic chemistry can open new avenues of research in order to avoid some problems related with the intrinsic biodegradability and toxicity associated to conventional ILs. The research work developed aimed for the synthesis of CILs, their characterization and possible applications, based on biological moieties used either as chiral cations or anions, depending on the synthetic manipulation of the derivatives. Overall, a total of 28 organic salts, including CILs were synthesized: 9 based on L-cysteine derivatives, 12 based on L-proline, 3 based on nucleosides and 4 based on nucleotides. All these new CILs were completely characterized and their chemical and physical properties were evaluated. Some CILs based on L-cysteine have been applied for discrimination processes, including resolution of racemates and as a chiral catalyst for asymmetric Aldol condensation. L-proline derived CILs were also studied as chiral catalysts for Michael reaction. In parallel, the interactions of macrocyclic oligosugars called cyclodextrins (CDs) with several ILs were studied. It was possible to improve the solubility of CDs in water and serum. Additionally, fatty acids and steroids showed an increase in water solubility when ILs-CDs systems were used. The development of efficient and selective ILs-CDs systems is indispensable to expand the range of their applications in host-guest interactions, drug delivery systems or catalytic reactions. Novel salts derived from nucleobases were used in order to enhance the fluorescence in aqueous solution. Additionally, preliminary studies regarding ethyl lactate as an alternative solvent for asymmetric organocatalysis were performed.
Resumo:
Carbon dioxide valorization, will not only help to relieve the greenhouse effect but might also allow us to transform it in value-added chemicals that will help overcoming the energy crisis. To accomplish this goal, more research that focus on sequestering CO2 and endeavors through a carbon-neutral or carbon-negative strategy is needed in order to handle with the dwindling fossil fuel supplies and their environmental impact. Formate dehydrogenases are a promising means of turning CO2 into a biofuel that will allow for a reduction of greenhouse gas emissions and for a significant change to the economic paramount. The main objective of this work was to assess whether a NAD+-independent molybdenum-containing formate dehydrogenase is able to catalyze the reduction of CO2 to formate. To achieve this, a molybdenum-containing formate dehydrogenase was isolated from the sulfate reducing bacteria Desulfovibrio desulfuricans ATCC 27774. Growth conditions were found that allowed for a greater cellular mass recovery and formate dehydrogenase expression. After growth trials, kinetic assays for formate oxidation and CO2 reduction were performed and kinetic parameters determined. For the formate oxidation reaction, a KM of 49 μM and a turnover constant of 146 s-1 were determined. These kinetic parameters are in agreement with those determined by Mota, et al. (2011). Finally, we found that this molybdenum-containing enzyme was able to catalyze the reduction of CO2 to formate with a turnover constant of 4.6 s-1 and a KM of 13 μM. For the first time a NAD+-independent molybdenum-containing formate dehydrogenase was found to catalyze CO2 reduction, allowing its use as a biocatalyst in energetically efficient CO2 fixation processes that can be directed towards bioremediation or as an alternative and renewable energy source. Characterizing these enzymes may lead to the development of more efficient synthetic catalysts, make them readily available and more suited for practical applications.
Resumo:
Neste trabalho avaliou-se o desempenho de cinco catalisadores de Níquel suportados em α-Alumina, com diferentes teores em Ítria, durante a reação de Oxidação Parcial do Metano para a produção de Hidrogénio: 8%Ni/α-Al2O3, 8%Ni/2%Y2O3.α-Al2O3, 8%Ni/2,5%Y2O3.α-Al2O3, 8%Ni/5%Y2O3.α-Al2O3 e 8%Ni/Y2O3. Foram realizados testes catalíticos numa Unidade de Reação acoplada a um equipamento de análise, microGC. A reação decorreu à temperatura de 800 °C, num reator laboratorial de quartzo, durante 18 horas, com uma mistura pura de CH4 e O2 (Condição Concentrada). Os resultados demonstraram um aumento de atividade para os catalisadores de suporte misto com maior teor em Y2O3. Usando o mesmo procedimento, a reação de OPM foi realizada também para outra mistura reacional de CH4 e O2, mas agora diluída em Hélio (Condição Diluída). Estes resultados permitiram avaliar a velocidade de reação e a atividade dos catalisadores (TOF), para diferentes valores de temperatura, numa situação inicial de ausência de coque. Numa segunda etapa, avaliou-se o desempenho dos mesmos materiais durante 2 horas de reação à temperatura constante de 800 ℃. Finalmente, através da técnica de caraterização de XPS, identificaram-se as espécies presentes na superfície dos catalisadores. Os resultados sugerem que há formação de um composto intermediário NiYO3 formado entre o metal e o promotor Y2O3, conferindo atividade e estabilidade aos catalisadores e reduzindo a deposição de coque. O catalisador com maior teor em Y2O3 (8%Ni/5%Y2O3.α-Al2O3) foi o mais beneficiado com a adição do promotor, demonstrando melhor desempenho para a produção de H2 na Reação de Oxidação Parcial do Metano.
Resumo:
With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.
Resumo:
A procura de novos materiais aumenta dia após dia, obrigando o Homem a procurar e encontrar novas soluções, tendo sempre como critério decisivo, uma exploração económica e ambiental sustentável. É neste âmbito que surge o tema desta dissertação. O objetivo é tirar um maior proveito do sienito nefelínico de Monchique (Portugal), à semelhança de países como a Rússia, Canadá e Noruega, que utilizam esta rocha a nível industrial. Neste trabalho, a investigação foi no sentido de estudar o potencial da rocha portuguesa para a indústria cerâmica. O elevado teor de alumina e álcalis que o sienito nefelínico apresenta na sua constituição, serve de substituto aos minerais atualmente utilizados neste sector, os feldspatos isolados. A alumina serve de estabilizador, promovendo a durabilidade dos materiais pelo aumento da resistência e o conteúdo em álcalis funciona como fundente, diminuindo a temperatura de queima. Desta forma, o Maciço de Monchique ganha uma nova importância económica, sendo uma mais-valia para o país. Para tal, elaboraram-se provetes cerâmicos constituídos por 0, 20, 40 e 60% em peso de sienito nefelínico em mistura com argila. Posteriormente, sujeitaram-se os provetes a três temperaturas diferentes, 900 °C, 1000 °C e 1100 °C e submeteram-se cada um deles a ensaios físicos e mecânicos, para determinar o potencial da incorporação do sienito de Monchique na indústria cerâmica. Os resultados indicaram que a adição de sienito nefelínico melhora as propriedades físicas da argila. Relativamente às propriedades mecânicas, o ensaio de resistência à flexão indicou que, dos vários teores testados, o mais positivo encontra-se na percentagem de 20% de sienito nefelínico, apresentando valores próximos da argila pura utilizada como referência.
Resumo:
Based on samples cross-sections from the Main Altarpiece of the Coimbra Old Cathedral, where a blue coating performed in 1685 is observed (that was partly covered with a Prussian blue-containing overpaint), the raw materials present in this coating were reproduced and studied. Blue areas were painted with smalt in oil, according to the contract signed by Manoel da Costa Pereira in 1684 and the analysis by Le Gac in 2009. Based on these, three batches of cobalt-based glasses (S1, S2 and S3) were heated and melted in alumina crucibles in the kiln. S1 contained 6.03 % of cobalt oxide, S2 contained 2.10 %, with the addition of 1.49 % of magnesium oxide, and S3 contained 6.82 % of cobalt oxide, with the addition of 4.63% of antimony trioxide. These batches were ground mechanically with water and manually with different vehicles stated in recipes. The results were studied by means of OM, SEM-EDS, X-Ray CT, Colorimetry and Vickers HT. Different binders were also produced and analyzed by means of μ-FTIR, in order to perform their characterization and obtain Standard Spectra. Since anhydrite was identified in the ground layers, gypsum from Óbidos was also characterized by XRD. The main goal of this thesis was to study all the raw materials present in the 1685-blue coating, in order to allow the historically accurate reconstruction of the layers build-up in the next future.
Resumo:
Paper submitted to e-conservation Journal: Maria Leonor Oliveira, Leslie Carlyle, Sara Fragoso, Isabel Pombo Cardoso and João Coroado, “Investigations into paint delamination and consolidation of an oil painting on copper support”.