57 resultados para MEXICAN LIME
Resumo:
HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibilit, LNEC, Lisbon, 24-26 September 2008
Resumo:
HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibility, LNEC, Lisbon, 24-26 September 2008
Resumo:
XXX IAHS World Congress on Housing - Housing Construction: An Interdisciplinary Task, September 9-13, 2002, Coimbra, Portugal
Resumo:
Construction and Building Materials 54 (2014) 378–384
Resumo:
2nd Historic Mortars Conference - HMC 2010 and RILEM TC 203-RHM Final Workshop, Prague, September 2010
Resumo:
9th International Masonry Conference 2014, 7-9 July, Universidade do Minho, Guimarães
Resumo:
International Conference on Vernacular Heritage, Sustainability and Earthen Architecture, VerSus 2014, 2nd MEDITERRA, 2nd ResTAPIA, 11-13 September, Valencia, Spain
Resumo:
Tese para obtenção do Grau de Doutor em Engenharia Civil, Especialidade Ciências da Construção
Resumo:
The formulation and use of lime mortars with ceramic particles has, in the past, been a very common technique. Knowledge of such used techniques and materials is fundamental for the successful rehabilitation and conservation of the built heritage. The durability that these mortars have shown encourages the study of the involved mechanisms, so that they may be adapted to the current reality. The considerable amount of waste from old ceramics factories which is sent for disposal might present an opportunity for the production of reliable improved lime mortars. In this paper a number of studies that characterize old building mortars containing ceramic fragments are reviewed. The most important research undertaken on laboratory prepared mortars with several heat treated clays types is presented, specifically with incorporated ceramic waste. Some studies on the pozzolanicity of heat treated clays are examined and the heating temperatures that seem most likely to achieve pozzolanicity are presented. It was verified that some heating temperatures currently used by ceramic industries might correspond to the temperatures that will achieve pozzolanicity.
Resumo:
Considering the fundamental importance of preserving the built heritage and of ensuring the good performance achieved by incorporating ceramic particles in lime mortars in ancient times, it is important to study solutions that use materials the available today, in order to produce mortars intended to repair and replace the old ones. Solutions incorporating industrial ceramic waste might be profitable for several reasons, namely for economic, environmental and technical aspects. In this paper, seven ceramic waste products collected from ceramics factories are characterized. Their mineralogy, dimensional features and pozzolanicity were determined. Three of these products, with different particle size fractions (obtained directly from milling, dust only and fragment fractions only), were selected, incorporated into air lime mortars, and their mechanical strength was determined. In the present work, evidence of mechanical efficiency, when common sand or air lime were partially replaced by ceramic wastes, was made clear, drawing attention to the sustainability of this type of mortars, hence, encouraging further research.
Resumo:
Due to their exposure to environmental conditions, outer coatings composed by render and painting system are usually the first construction elements to deteriorate and require intervention. A correct conservation and rehabilitation of these materials is fundamental once they provide protection to other façade materials. It is known that old mortar renders were essentially air lime based mortars. To maintain the integrity of the whole wall-render elements, the image of the building and to avoid accelerated degradation, conservation and rehabilitation must be implemented with compatible mortars. As that, lime based mortars would be preferable. It was also common, in ancient renders, the incorporation of ceramic residues, which is, nowadays, an abundant material, especially in Central Region of Portugal. The reuse of these materials has great relevance once their landfilling causes serious environmental issues. In an attempt to combine the environmental and technical advantages of the use of ceramic waste in mortars’ production for rehabilitation purposes, a research has been developed at the University of Coimbra, in cooperation with Nova University of Lisbon, on the long term behaviour of air lime mortars with ceramic residues. In this paper the most significant up to one year results of an experimental campaign with air lime mortars with 1:3 and 1:2 volumetric proportions and ceramic residues are presented.
Resumo:
Historical renders are exposed to several degradation processes that can lead to a wide range of anomalies,such as scaling, detachments, and pulverization. Among the common anomalies, the loss of cohesion and of adhesion are usually identified as the most difficult to repair; these anomalies still need to be deeply studied to design compatible, durable, and sustainable conservation treatments. The restitution of render cohesion can be achieved using consolidating products. Nevertheless, repair treatments could induce aesthetic alterations, and, therefore, are usually followed by chromatic reintegration. This work aims to study the effectiveness of mineral products as consolidants for lime-based mortars and simultaneously as chromatic treatments for pigmented renders. The studied consolidating products are prepared by mixing air lime,metakaolin, water, and mineral pigments. The idea of these consolidating and coloring products rises from a traditional lime-based technique, the limewash, widely diffused in southern Europe and in the Mediterranean area. Consolidating products were applied and tested on lime-based mortar specimens with a low binder–aggregate ratio and therefore with reduced cohesion. A physico-mechanical, microstructural, and mineralogical characterization was performed on untreated and treated specimens, in order to evaluate the efficacy and durability of the treatments. Accelerated aging tests were also performed to assess consolidant durability, when subjected to aggressive conditions. Results showed that the consolidants tested are compatible, effective, and possess good durability.
Resumo:
The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. In this study scrap tire rubber was used as additional aggregate of mortars based on natural hydraulic lime NHL 3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained directly from industry and separated fine, medium and coarse fractions; 0 %, 18 %, 36 % and 54 % of the weight of binder, corresponding to 2.5 %, 5 % and 7.5 % of the weight of sand. As mortars based on NHL specifications became stricter with the current version of EN 459–1:2015, the influence of the rubber’s additions on the mortars’ fresh state, mechanical and physical performance is presented in this work: flow table consistency, water retention, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity are studied. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.
Resumo:
Earthen building materials bear interesting environmental advantages and are the most appropriate to conserve historical earth constructions. To improve mechanical properties, these materials are often stabilized with cement or lime, but the impact of the stabilizers on the water transport properties, which are also critical, has been very rarely evaluated. We have tested four earth-based repair mortars applied on three distinct and representative rammed earth surfaces. Three mortars are based on earth collected from rammed earth buildings in south of Portugal and the fourth mortar is based on a commercial clayish earth. The main objective of the work was over the commercial earth mortar, applied stabilized and not stabilized on the three rammed earth surfaces to repair, to assess the influence of the stabilizers. The other three earth mortars (not stabilized) were applied on each type of rammed earth, representing the repair only made with local materials. The four unstabilized earth materials depicted nonlinear dependence on t1/2 during capillary suction. This behaviour was probably due to clay swelling. Stabilization with any of the four tested binders enabled the linear dependence of t1/2 expected from Washburn's equation, probably because the swelling did not take place in this case. However, the stabilizers also increased significantly the capillary suction and the capillary porosity of the materials. This means that, in addition to increasing the carbon footprint, stabilizers like cement and lime have functional disadvantages that discourage its use in repair mortars for raw earth construction.
Resumo:
Renders are an important item in historical buildings and the need for their periodical re-application is a basic conservation procedure. In modern times there has been a trend towards the replacement of traditional pure lime mortars by new formulations including Portland cement or hydraulic lime. Apart from those interventions on specific and very important monuments, in which the use oftraditional non-hydraulic mortars can be enforced, in most of the projects involving less than first order magnitude heritage the use of some sort of hydraulic components is becoming the rule rather than the exception. The present paper describes and analyses the results of an experimental study with ten formulations of current mortars - including some that can hardly be considered as adequate conservation procedures - allowing a direct comparison in terms of some of the most relevant characteristics.