20 resultados para Load factor
Resumo:
A capacidade que os organismos possuem de alterar os seus padrões de expressão de genes em resposta a alterações no meio ambiente é essencial para a sua viabilidade. A levedura Saccharomyces cerevisiae, em particular, possui um programa complexo e muito flexível de expressão de genes quando exposta a mudanças agressivas do seu meio ambiente. As células mantêm a sua homeostase através de mecanismos coordenados de regulação de vários factores de transcrição, cada um desempenhando funções específicas. Neste trabalho foi estudada a relevância do factor de transcrição da família Yap de S. cerevisiae, o Yap5, na destoxificação do excesso de ferro na célula. Os resultados obtidos neste trabalho mostram que após a incubação com elevadas quantidades de sulfato de ferro, embora o potencial de transactivação do Yap5 aumente, os níveis da proteína diminuem, sendo esta diminuição dependente da concentração de ferro. Demonstrámos também que embora a expressão do gene CCC1 (que codifica para o único transportador vacuolar de ferro conhecido) seja dependente do Yap5 em condições de excesso de ferro, os níveis basais de expressão deste gene são suficientes para a sobrevivência nessas condições. Observámos ainda que, ao contrário do que acontece em Schizosaccharomyces pombe, o factor de transcrição Hap4, não parece estar envolvido nesta regulação. Através de delecções sequenciais da região promotora do CCC1, verificámos que os níveis de expressão ditados por uma região de 58pb a montante do codão de iniciação, ATG, são suficientes para a célula sobreviver sob concentrações elevadas de ferro. Verificámos ainda que a região 3’UTR do gene é importante para a sobrevivência celular. Nessa região, identificámos uma estrutura em forma de “hairpin” que poderá estar envolvida na regulação do gene.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology.
Resumo:
Dissertação para obtenção do Grau de Doutor em Nanotecnologias e Nanociências
Resumo:
Enhanced biological phosphorus removal (EBPR) is the most economic and sustainable option used in wastewater treatment plants (WWTPs) for phosphorus removal. In this process it is important to control the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), since EBPR deterioration or failure can be related with the proliferation of GAOs over PAOs. This thesis is focused on the effect of operational conditions (volatile fatty acid (VFA) composition, dissolved oxygen (DO) concentration and organic carbon loading) on PAO and GAO metabolism. The knowledge about the effect of these operational conditions on EBPR metabolism is very important, since they represent key factors that impact WWTPs performance and sustainability. Substrate competition between the anaerobic uptake of acetate and propionate (the main VFAs present in WWTPs) was shown in this work to be a relevant factor affecting PAO metabolism, and a metabolic model was developed that successfully describes this effect. Interestingly, the aerobic metabolism of PAOs was not affected by different VFA compositions, since the aerobic kinetic parameters for phosphorus uptake, polyhydroxyalkanoates (PHAs) degradation and glycogen production were relatively independent of acetate or propionate concentration. This is very relevant for WWTPs, since it will simplify the calibration procedure for metabolic models, facilitating their use for full-scale systems. The DO concentration and aerobic hydraulic retention time (HRT) affected the PAO-GAO competition, where low DO levels or lower aerobic HRT was more favourable for PAOs than GAOs. Indeed, the oxygen affinity coefficient was significantly higher for GAOs than PAOs, showing that PAOs were far superior at scavenging for the often limited oxygen levels in WWTPs. The operation of WWTPs with low aeration is of high importance for full-scale systems, since it decreases the energetic costs and can potentially improve WWTP sustainability. Extended periods of low organic carbon load, which are the most common conditions that exist in full-scale WWTPs, also had an impact on PAO and GAO activity. GAOs exhibited a substantially higher biomass decay rate as compared to PAOs under these conditions, which revealed a higher survival capacity for PAOs, representing an advantage for PAOs in EBPR processes. This superior survival capacity of PAOs under conditions more closely resembling a full-scale environment was linked with their ability to maintain a residual level of PHA reserves for longer than GAOs, providing them with an effective energy source for aerobic maintenance processes. Overall, this work shows that each of these key operational conditions play an important role in the PAO-GAO competition and should be considered in WWTP models in order to improve EBPR processes.
Resumo:
Field lab: Business project