24 resultados para Leopold Center for Sustainable Agriculture
Resumo:
Forest managers, stakeholders and investors want to be able to evaluate economic, environmental and social benefits in order to improve the outcomes of their decisions and enhance sustainable forest management. This research developed a spatial decision support system that provides: (1) an approach to identify the most beneficial locations for agroforestry projects based on the biophysical properties and evaluate its economic, social and environmental impact; (2) a tool to inform prospective investors and stakeholders of the potential and opportunities for integrated agroforestry management; (3) a simulation environment that enables evaluation via a dashboard with the opportunity to perform interactive sensitivity analysis for key parameters of the project; (4) a 3D interactive geographic visualization of the economic, environmental and social outcomes, which facilitate understanding and eases planning. Although the tool and methodology presented are generic, a case study was performed in East Kalimantan, Indonesia. For the whole study area, it was simulated the most suitable location for three different plantation schemes: monoculture of timber, a specific recipe (cassava, banana and sugar palm) and different recipes per geographic unit. The results indicate that a mixed cropping plantation scheme, with different recipes applied to the most suitable location returns higher economic, environmental and social benefits.
Resumo:
A ready-mixed and several laboratory formulated mortars were produced and tested in fresh state and after hardening, simulating a masonry plaster for indoor application. All the mortars used a clayish earth from the same region and different compositions of aggregates, eventually including fibres and a phase change material. All the formulated mortars were composed by 1:3 volumetric proportions of earth and aggregate. Tests were developed for consistency, fresh bulk density, thermal conductivity, capillary absorption and drying, water vapour permeability and sorption-desorption. The use of PCM changed drastically the workability of the mortars and increased their capillary absorption. The use of fibres and variations on particle size distribution of the mixtures of sand that were used had no significant influence on tested properties. But particularly the good workability of these mortars and the high capacity of sorption and desorption was highlighted. With this capacity plasters made with these mortars are able to adsorb water vapour from indoor atmosphere when high levels of relative humidity exist and release water vapour when the indoor atmosphere became too dry. This fact makes them able to contribute passively for a healthier indoor environment. The technical, ecological and environmental advantages of the application of plasters with this type of mortars are emphasized, with the aim of contributing for an increased use for new or existent housing.
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.
Resumo:
Field lab: Consulting lab
Resumo:
In modern society, energy consumption and respect for the environment have become essential aspects of urban planning. The rising demand for alternative sources of energy, coupled with the decline in the construction sector and material usage, gives the idea that the thinking on modern cities, where attention is given to reduced energy consumption, savings, waste recycling and respect for the surrounding environment, is being put into practice. If we examine development of the city over recent centuries, by means of the theories of the most famous and influential urban planners, it is possible to identify the major problems caused by this type of planning. For this reason, in recent urban planning the use of systems of indicators that evaluate and certify land environmentally and energetically guides the master plan toward a more efficient city model. In addition the indicators are targeted on key factors determined by the commissioner or the opportunities the territory itself provides. Due the complexity of the environmental mechanics, the process of design and urban planning has become a challenging issue. The introduction of the indicators system has made it possible to register the life of the process, with a spiral route that allows the design itself to be refined. The aim of this study, built around the creation of a system of urban sustainability indicators that will evaluate highly eco-friendly cities, is to develop a certification system for cities or portions of them. The system will be upgradeable and objective, will employ real data and will be concerned with energy production and consumption.
Resumo:
In this Work Project, it will be assessed how Sintra’s sustainability is affected by the consequences of the visitor flow on its urban historical center. Two research questions will support this case study: What is the main problem affecting Sintra as a tourism destination? How sustainable will Sintra be in the next 10-15 years? The main findings suggest Sintra faces an intense seasonal pressure on its historical city center and its sustainability might be seriously affected in the near future, whereby three domains of the destination deserve a serious strategy reassessment: promotion, management, and supply.
Resumo:
In recent years it has been noticed the progressive disappearance of vernacular sustainable building technologies all over the world mainly due to a strong urban rehabilitation process with modern technologies not compatible with ancient knowledge. Simultaneously new dwellings are needed all over the world and in this sense it was decided to study an ecological and cost-controlled building technology of monolithic walls that can combine the use of low carbon footprint materials, such as earth, fibres and lime using an invasive species: giant reed cane (Arundo Donax). This paper explains the development of this building technology through testing diverse prototypes.
Resumo:
This project aims to provide feasible solutions to improve customer´s Help Area at Continente Online. The goal is to increase satisfaction and loyalty by reducing the main causes that lead customers to appeal to Call Center or abandon the website. The pursued solution is the implementation of Web Self-Service and the vision taken is focused not only on providing customers basic help tools but also innovate with international best practices to sustain Sonae MC´s present and future market leader position. Customer´s feedback, costs and impact are taken in consideration to find the best fit for the company.
Resumo:
Many Nonprofit Organizations are pursuing mergers and alliances with the purpose of become more sustainable, better use their resources, and generate a higher impact. This report wants to bring further concrete evidences to the contents highlighted by the researchers. Firstly, a theoretical framework is derived from the literature analysis. Based on that a case study is developed, which see the NOVA SBE and the IES – SBS planning a strategic alliance to constitute a new Social Entrepreneurship Center. A first analysis of the strategic alliance plan showed a wide potential in terms of impact generated and sustainability, only the future steps will be able to demonstrate the successful implementation.