20 resultados para Industrial buildings -- Energy conservation
Resumo:
HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibility, LNEC, Lisbon, 24-26 September 2008
Resumo:
Due to their exposure to environmental conditions, outer coatings composed by render and painting system are usually the first construction elements to deteriorate and require intervention. A correct conservation and rehabilitation of these materials is fundamental once they provide protection to other façade materials. It is known that old mortar renders were essentially air lime based mortars. To maintain the integrity of the whole wall-render elements, the image of the building and to avoid accelerated degradation, conservation and rehabilitation must be implemented with compatible mortars. As that, lime based mortars would be preferable. It was also common, in ancient renders, the incorporation of ceramic residues, which is, nowadays, an abundant material, especially in Central Region of Portugal. The reuse of these materials has great relevance once their landfilling causes serious environmental issues. In an attempt to combine the environmental and technical advantages of the use of ceramic waste in mortars’ production for rehabilitation purposes, a research has been developed at the University of Coimbra, in cooperation with Nova University of Lisbon, on the long term behaviour of air lime mortars with ceramic residues. In this paper the most significant up to one year results of an experimental campaign with air lime mortars with 1:3 and 1:2 volumetric proportions and ceramic residues are presented.
Resumo:
The main purpose of the research is to present a proposal for a methodology to support the rehabilitation project of renders of old buildings in Portugal. To achieve the objective it was considered essential to define the main types of participants and aspects to integrate the proposal. The research methodology consists in an inquiry presented to professional participants in rehabilitation, a market study of materials and products available in Portugal, the design of a methodology proposal and its application to a case study. The inquiry sample totals 24 answers from the targeted professionals. A sequence of relevant supporting procedures consists in the proposal, which aims to provide a supporting methodology to decide and project in this context and also to be tested with its application to the building. This proposal was applied to an old building with load-bearing stone masonry walls and air-lime based renders. It was concluded that the assessment of the building and external renderings’ condition, its diagnosis and of the supporting walls, the definition of intervention, the specification of materials to be used and performance requirements to comply, and also plans for conservation and periodic maintenance, are crucial. From the inquiry, compatibility between materials and complementary roles and points of view of different types of participants in rehabilitation must be highlighted. A proposal for a methodology to support the project could provide useful guidance particularly for architects and construction engineers, and improve the understanding of direct participants on site, therefore contributing for the correct implementation of intervention.
Resumo:
The main purpose of the research is to present a proposal for a methodology to support the rehabilitation project of renders of old buildings. To achieve the objective it was considered essential to define the main types of participants and aspects to integrate the proposal. The research methodology consists in an inquiry presented to several professional participants in rehabilitation, a market study of materials and products available in Portugal, the design of a methodology proposal and its application to a case study. The inquiry sample totals 24 answers from the targeted professionals. A sequence of relevant supporting procedures consists in the proposal, which aims to provide a supporting methodology to decide and project in this context and also to be tested with its application to the building. This proposal was applied to an old building with load-bearing stone masonry walls and air-lime based renders. It was concluded that the assessment of the building and external renderings’ condition, its diagnosis and of the supporting walls, the definition of intervention, the specification of materials to be used and performance requirements to comply, and also plans for conservation and periodic maintenance, are crucial. From the inquiry, compatibility between materials and complementary roles and points of view of different types of participants in rehabilitation must be highlighted. A proposal for a methodology to support the project could provide useful guidance particularly for architects and construction engineers, and improve the understanding of direct participants on site, therefore contributing for the correct implementation of the intervention.
Resumo:
The considerable amount of energy consumed on Earth is a major cause for not achieving sustainable development. Buildings are responsible for the highest worldwide energy consumption, nearly 40%. Strong efforts have been made in what concerns the reduction of buildings operational energy (heating, hot water, ventilation, electricity), since operational energy is so far the highest energy component in a building life cycle. However, as operational energy is being reduced the embodied energy increases. One of the building elements responsible for higher embodied energy consumption is the building structural system. Therefore, the present work is going to study part of embodied energy (initial embodied energy) in building structures using a life cycle assessment methodology, in order to contribute for a greater understanding of embodied energy in buildings structural systems. Initial embodied energy is estimated for a building structure by varying the span and the structural material type. The results are analysed and compared for different stages, and some conclusions are drawn. At the end of this work it was possible to conclude that the building span does not have considerable influence in embodied energy consumption of building structures. However, the structural material type has influence in the overall energetic performance. In fact, with this research it was possible that building structure that requires more initial embodied energy is the steel structure; then the glued laminated timber structure; and finally the concrete structure.