32 resultados para ELECTRON-TRANSPORTING UNITS
Resumo:
J Biol Inorg Chem (2006) 11: 433–444 DOI 10.1007/s00775-006-0090-0
Resumo:
J Biol Inorg Chem (2004) 9: 839–849 DOI 10.1007/s00775-004-0584-6
Resumo:
Dissertação para obtenção do Grau de Doutor em Bioquímica, ramo de Biotecnologia
Resumo:
A thesis submitted for the degree of Ph. D. in Physics
Resumo:
Dissertação para a obtenção de grau de doutor em Bioquímica pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Dissertation to obtain the Doctoral degree in Physics Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry
Resumo:
Dissertation to obtain a Master degree in Biotechnology
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Física
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry
Resumo:
The role of a set of gases relevant within the context of biomolecules and technologically relevant molecules under the interaction of low-energy electrons was studied in an effort to contribute to the understanding of the underlying processes yielding negative ion formation. The results are relevant within the context of damage to living material exposed to energetic radiation, to the role of dopants in the ion-molecule chemistry processes, to Electron Beam Induced Deposition (EBID) and Ion Beam Induced Deposition (IBID) techniques. The research described in this thesis addresses dissociative electron attachment (DEA) and electron transfer studies involving experimental setups from the University of Innsbruck, Austria and Universidade Nova de Lisboa, Portugal, respectively. This thesis presents DEA studies, obtained by a double focusing mass spectrometer, of dimethyl disulphide (C2H6S2), two isomers, enflurane and isoflurane (C3F5Cl5) and two chlorinated ethanes, pentachloroethane (C2HCl5) and hexachloroethane (C2Cl6), along with quantum chemical calculations providing information on the molecular orbitals as well as thermochemical thresholds of anion formation for enflurane, isoflurane, pentachloroethane and hexachloroethane. The experiments represent the most accurate DEA studies to these molecules, with significant differences from previous work reported in the literature. As far as electron transfer studies are concerned, negative ion formation in collisions of neutral potassium atoms with N1 and N3 methylated pyrimidine molecules were obtained by time-of-flight mass spectrometry (TOF). The results obtained allowed to propose concerted mechanisms for site and bond selective excision of bonds.