18 resultados para Distributed Control Problems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The “CMS Safety Closing Sensors System” (SCSS, or CSS for brevity) is a remote monitoring system design to control safety clearance and tight mechanical movements of parts of the CMS detector, especially during CMS assembly phases. We present the different systems that makes SCSS: its sensor technologies, the readout system, the data acquisition and control software. We also report on calibration and installation details, which determine the resolution and limits of the system. We present as well our experience from the operation of the system and the analysis of the data collected since 2008. Special emphasis is given to study positioning reproducibility during detector assembly and understanding how the magnetic fields influence the detector structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capacity to use geologic materials (soil and rock) that are available in the surrounding environment is inherent to the human civilization and has contributed to the evolution of societies throughout the course of history. The use of these materials in the construction of structures such as houses, roads, railways or dams, stirred the improvement of socioeconomic and environmental conditions. Several reports of structural problems on embankments can be found throughout history. A considerable number of those registers can be linked to inadequate compaction, demonstrating the importance of guaranteeing a suitable quality of soil compaction. Various methodologies and specifications of compaction quality control on site of earthworks, based on the fill moisture content and dry unit weight, were developed during the 20th century. Two widely known methodologies are the conventional and nuclear techniques. The conventional methods are based on the use of the field sand cone test (or similar) and sampling of material for laboratory-based testing to evaluate the fill dry unit weight and water content. The nuclear techniques measure both parameters in the field using a nuclear density gauge. A topic under discussion in the geotechnical community, namely in Portugal, is the comparison between the accuracy of the nuclear gauge and sand cone test results for assessing the compaction and density ratio of earth fills, particularly for dams. The main purpose of this dissertation is to compare both of them. The data used were acquired during the compaction quality control operations at the Coutada/Tamujais dam trial embankment and core construction. This is a 25 m high earth dam located in Vila Velha de Rodão, Portugal. To analyse the spatial distribution of the compaction parameters (water content and compaction ratio), a 3D model was also developed. The main results achieved are discussed and finally some considerations are put forward on the suitability of both techniques to ensure fill compaction quality and on additional research to complement the conclusions obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The way in which electricity networks operate is going through a period of significant change. Renewable generation technologies are having a growing presence and increasing penetrations of generation that are being connected at distribution level. Unfortunately, a renewable energy source is most of the time intermittent and needs to be forecasted. Current trends in Smart grids foresee the accommodation of a variety of distributed generation sources including intermittent renewable sources. It is also expected that smart grids will include demand management resources, widespread communications and control technologies required to use demand response are needed to help the maintenance in supply-demand balance in electricity systems. Consequently, smart household appliances with controllable loads will be likely a common presence in our homes. Thus, new control techniques are requested to manage the loads and achieve all the potential energy present in intermittent energy sources. This thesis is focused on the development of a demand side management control method in a distributed network, aiming the creation of greater flexibility in demand and better ease the integration of renewable technologies. In particular, this work presents a novel multi-agent model-based predictive control method to manage distributed energy systems from the demand side, in presence of limited energy sources with fluctuating output and with energy storage in house-hold or car batteries. Specifically, here is presented a solution for thermal comfort which manages a limited shared energy resource via a demand side management perspective, using an integrated approach which also involves a power price auction and an appliance loads allocation scheme. The control is applied individually to a set of Thermal Control Areas, demand units, where the objective is to minimize the energy usage and not exceed the limited and shared energy resource, while simultaneously indoor temperatures are maintained within a comfort frame. Thermal Control Areas are overall thermodynamically connected in the distributed environment and also coupled by energy related constraints. The energy split is performed based on a fixed sequential order established from a previous completed auction wherein the bids are made by each Thermal Control Area, acting as demand side management agents, based on the daily energy price. The developed solutions are explained with algorithms and are applied to different scenarios, being the results explanatory of the benefits of the proposed approaches.