24 resultados para Delivery reliability
Resumo:
The work presented in this thesis was developed in collaboration with a Portuguese company, BeyonDevices, devoted to pharmaceutical packaging, medical technology and device industry. Specifically, the composition impact and surface modification of two polymeric medical devices from the company were studied: inhalers and vaginal applicators. The polyethylene-based vaginal applicator was modified using supercritical fluid technology to acquire self-cleaning properties and prevent the transport of bacteria and yeasts to vaginal flora. For that, in-situ polymerization of 2-substituted oxazolines was performed within the polyethylene matrix using supercritical carbon dioxide. The cationic ring-opening polymerization process was followed by end-capping with N,N-dimethyldodecylamine. Furthermore, for the same propose, the polyethylene matrix was impregnated with lavender oil in supercritical medium. The obtained materials were characterized physical and morphologically and the antimicrobial activity against bacteria and yeasts was accessed. Materials modified using 2-substituted oxazolines showed an effective killing ability for all the tested microorganisms, while the materials modified with lavender oil did not show antimicrobial activity. Only materials modified with oligo(2-ethyl-2-oxazoline) maintain the activity during the long term stability. Furthermore, the cytotoxicity of the materials was tested, confirming their biocompatibilty. Regarding the inhaler, its surface was modified in order to improve powder flowability and consequently, to reduce powder retention in the inhaler´s nozzle. New dry powder inhalers (DPIs), with different needle’s diameters, were evaluated in terms of internal resistance and uniformity of the emitted dose. It was observed that they present a mean resistance of 0.06 cmH2O0.5/(L/min) and the maximum emitted dose obtained was 68.9% for the inhaler with higher needle´s diameter (2 mm). Thus, this inhaler was used as a test and modified by the coating with a commonly-used force control agent, magnesium stearate, dried with supercritical carbon dioxide (scCO2) and the uniformity of delivered dose tests were repeated. The modified inhaler showed an increase in emitted dose from 68.9% to 71.3% for lactose and from 30.0% to 33.7% for Foradil.
Resumo:
In this work, biocompatible and biodegradable poly(D-L-lactide-co-glycolide) (PLGA) microparticles with the potential for use as a controlled release system of vaccines and other drugs to the lung were manufactured using supercritical CO2, through the Supercritical Assisted Atomization (SAA) technique. After performing a controlled variance in production parameters (temperature, pressure, CO2/solution flow ratio) PLGA microparticles were characterized and later used to encapsulate active pharmaceutical ingredients (API). Bovine serum albumin (BSA) was chosen as model protein and vaccine, while sildenafil was the chosen drug to treat pulmonary artery hypertension and their effect on the particles characteristics was evaluated. All the produced formulations were characterized in relation to their morphology (Morphologi G3 and scanning electronic microscopy (SEM)), to their physical-chemical properties (X-ray diffraction (XRD, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR)) and aerodynamic performance using an in vitro aerosolization study – Andersen cascade impactor (ACI) - to obtain data such as the fine particle fraction (FPF) and the mass median aerodynamic diameter (MMAD). Furthermore, pharmacokinetic, biodegradability and biocompatibility tests were performed in order to verify the particle suitability for inhalation. The resulting particles showed aerodynamic diameters between the 3 and 5 μm, yields up to 58% and FPF percentages rounding the 30%. Taken as a whole, the produced microparticles do present the necessary requests to make them appropriate for pulmonary delivery.
Resumo:
Gene therapy presents an ideal strategy for the treatment of genetic as well as acquired diseases, such as cancer and typically involves the insertion of a functioning gene into cells to correct a cellular dysfunction or to provide a new cellular function. Gene delivery vectors are based in two models: viral and non-viral. Viral vectors have high transfection efficiency but their major barrier is immunogenicity. Since the non-viral vectors have no immunogenicity, these have been widely studied. Gold nanoparticles have been proposed as optimal delivery systems of genetic material, due their small size, high surface-to-volume ratio and the ability to be functionalized with multiple molecules. In the present work, an AuNP-based formulation was developed to deliver a plasmid in a colorectal cancer cell line, containing as reporter gene the gene encoding to EGFP. The delivery system resulted from the functionalization of 14 nm AuNP with a PEG layer (4300114 PEG chains/AuNP), which increases stability and biocompatibility of AuNPs; quaternary ammonium groups which provide positive charges that allow electrostatic binding of plasmid, which is considered the therapeutic agent to be transported into cells. The system developed was characterized by UV-vis spectroscopy, DLS, TEM and by electrophoretic mobility, yielding a formulation with 113.5 nm.Transfection efficiency of the formulation developed was evaluated through PCR and through EGFP expression by fluorescence microscopy and fluorescence spectroscopy. The internalization was observed 3h post transfection; however a low level of EGFP expression was achieved. After 24h of incubation, EGFP expression increases just 3 times compared to non-transfected cells. The commercial system (Lipofectamine) expressed EGFP 5 times more than the system developed AuNP@PEG@R4N+@pEGFP. This difference could be related to lower translocation to the nucleus.
Resumo:
My master studies have resulted in the following publication: Martins P, Rosa D, Fernandes AR, Baptista PV. 2014. Nanoparticle Drug Delivery Systems: Recent Patents and Applications in Nanomedicine. Recent Patents in Nanomedicine. 3(2):105-118.
Resumo:
Polymeric nanoparticles (PNPs) have attracted considerable interest over the last few years due to their unique properties and behaviors provided by their small size. Such materials could be used in a wide range of applications such as diagnostics and drug delivery. Advantages of PNPs include controlled release, protection of drug molecules and its specific targeting, with concomitant increasing of the therapeutic index. In this work, novel sucrose and cholic acid based PNPs were prepared from different polymers, namely polyethylene glycol (PEG), poly(D,L-lactic-co-glycolic acid) (PLGA) and PLGA-co-PEG copolymer. In these PNP carriers, cholic acid will act as a drug incorporation site and the carbohydrate as targeting moiety. The uptake of nanoparticles into cells usually involves endocytotic processes, which depend primarily on their size and surface characteristics. These properties can be tuned by the nanoparticle preparation method. Therefore, the nanoprecipitation and the emulsion-solvent evaporation method were applied to prepare the PNPs. The influence of various parameters, such as concentration of the starting solution, evaporation method and solvent properties on the nanoparticle size, size distribution and morphology were studied. The PNPs were characterized by using atomic force microscopy (AFM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) to assess their size distribution and morphology. The PNPs obtained by nanoprecipitation ranged in size between 90 nm and 130 nm with a very low polydispersity index (PDI < 0.3). On the other hand, the PNPs produced by the emulsion-solvent evaporation method revealed particle sizes around 300 nm with a high PDI value. More detailed information was found in AFM and SEM images, which demonstrated that all these PNPs were regularly spherical. ζ-potential measurements were satisfactory and evidenced the importance of sucrose moiety on the polymeric system, which was responsible for the obtained negative surface charge, providing colloidal stability. The results of this study show that sucrose and cholic acid based polymeric conjugates can be successfully used to prepare PNPs with tunable physicochemical characteristics. In addition, it provides novel information about the materials used and the methods applied. It is hoped that this work will be useful for the development of novel carbohydrate based nanoparticles for biomedical applications, specifically for targeted drug delivery.
Resumo:
AuNPs are versatile systems used for different biomedical application including imaging, drug and gene delivery. These systems support the intracellular transport of active molecules, a step that is considered one of the crucial problems in drug delivery. Nevertheless, in order to design optimal multifunctional AuNPs for specific and efficient nanomedicine applications, the mechanism by which AuNPs interact with living cells must be fully understand. The main goal of this work consisted in the assessment of the cellular uptake mechanism of 14 nm spherical AuNPs by A549 cells, through fluorescent spectroscopy and microscopy, in combination with quantitative analysis by ICP-MS. TAMRA labeled AuNPs were characterized by UV-visible and fluorescent spectroscopy and the final hydrodynamic diameter of 22.5 ± 0.33 nm was obtained by DLS. Regarding the cellular uptake studies, the AuNPs presented a fast cellular uptake kinetics reaching a saturation point after 6 hours of incubation in A549 cells. Further investigation concerning the internalization mechanism of this AuNPs was evaluated using specific inhibitors for different endocytic pathways. Optimal inhibition was achieved using chlorpromazine, inhibitor of clathrin-mediated endocytosis, resulting in a 23.5 % inhibition of AuNPs after 1 hour of incubation. This preliminary result obtained by fluorescent spectroscopy suggests that these AuNPs were predominantly uptake by clathrin-mediated endocytosis, meaning that other endocytic pathways must be involved in the cellular uptake of this AuNPs. In what cell viability is concern, the prepared AuNPs and the endocytic inhibitors revealed no significant effect on the cell viability in A549 cell line.
Resumo:
The advent of bioconjugation impacted deeply the world of sciences and technology. New biomolecules were found, biological processes were understood, and novel methodologies were formed due to the fast expansion of this area. The possibility of creating new effective therapies for diseases like cancer is one of big applications of this now big area of study. Off target toxicity was always the problem of potent small molecules with high activity towards specific tumour targets. However, chemotherapy is now selective due to powerful linkers that connect targeting molecules with affinity to interesting biological receptors and cytotoxic drugs. This linkers must have very specific properties, such as high stability in plasma, no toxicity, no interference with ligand affinity nor drug potency, and at the same time, be able to lyse once inside the target molecule to release the therapeutic warhead. Bipolar environments between tumour intracellular and extracellular medias are usually exploited by this linkers in order to complete this goal. The work done in this thesis explores a new model for that same task, specific cancer drug delivery. Iminoboronates were studied due to its remarkable selective stability towards a wide pH range and endogenous molecules. A fluorescence probe was design to validate this model by creating an Off/On system and determine the payload release location in situ. A process was optimized to synthetize the probe 8-(1-aminoethyl)-7-hydroxy-coumarin (1) through a reductive amination reaction in a microwave reactor with 61 % yield. A method to conjugate this probe to ABBA was also optimized, obtaining the iminoboronate in good yields in mild conditions. The iminoboronate model was studied regarding its stability in several simulated biological environments and each half-life time was determined, showing the conjugate is stable most of the cases except in tumour intracellular systems. The construction of folate-ABBA-coumarin bioconjugate have been made to complete this evaluation. The ability to be uptaken by a cancer cell through endocytosis process and the conjugation delivery of coumarin fluorescence payload are two features to hope for in this construct.
Resumo:
RESUMO: Santa Lúcia pequena ilha de país em desenvolvimento com recursos limitados e é confrontada com uma série de desafios socioeconômicos que exigem soluções criativas e inovadoras. É comprovado que a combinação de recursos entre setores para estabelecer os determinantes social, econômico e ambiental da saúde são uma estratégia útil para melhorar a saúde da população, principalmente a sua saúde mental. Este estudo, o primeiro do seu tipo em Santa Lúcia, procurou examinar até que ponto a disponibilidade de uma política nacional de saúde mental levou a ação intersetorial para o fornecimento de serviços e promoção da saúde mental. Além disso, o estudo examinou o nível de colaboração intersetorial que existe entre as agências que prestam cuidados diretos e serviços de suporte para pessoas com doenças mentais e problemas sérios de saúde mental. O estudo também teve como objetivo identificar os fatores que promovem ou dificultam a colaboração intersectorial e gerar recomendações que possam ser aplicadas para países muito pequenos e com perfis socioeconômicos semelhantes. Os dados gerados a partir de três (3) fontes foram sintetizados para formar uma visão ampla das questões. Uma avaliação da política de saúde mental de 2007, uma avaliação que identifica até que ponto a ação intersetorial atualmente deixa a prestação de serviços de saúde mental e a administração de entrevistas semiestruturadas nas mãos de gestores do programa de diferentes agências em todos os setores. O estudo concluiu que, apesar da disponibilidade de uma política de saúde mental, que articula clara e explicitamente a colaboração intersetorial como área prioritária para ação, quase não existe no sistema de fornecimento atual do serviço. Os provedores de serviços em todos os setores reconhecem que há os benefícios da colaboração intersectorial e com entraves significativos em relação à colaboração intersetorial, que por sua vez, impede uma abordagem nacional para o planejamento e o fornecimento do serviço. A colaboração intersetorial não será possível se os próprios setores dependerem da abordagem direta do setor da saúde ou se a atmosfera geral for ofuscada pela estigmatização das doenças mentais.------------------------------------------------------------------------ABSTRACT: Saint Lucia a small island developing country with limited resources, is faced with a number of socio-economic challenges which require creative and innovative solutions to address. Combining resources across sectors to address the social, economic and environmental determinants of health has proven to be a useful strategy for improving population health in particular mental health. This study, the first of its kind for Saint Lucia sought to examine the extent to which the availability of a national mental health policy led to intersectoral action for mental health promotion and service delivery. In addition the study examined the level of intersectoral collaboration which actually exist between agencies which provide direct care and support services to people with mental illnesses and significant mental health problems. The study also aimed to identify the factors which promote or hinder intersectoral collaboration and generate recommendations which can be applied to extremely small countries with similar socio-economic profiles. Data generated from three (3) sources was synthesized to form a broad picture of the issues. An evaluation of the mental health policy of 2007, an assessment of the extent to which intersectoral action currently exist in mental health service delivery and the administration of semi-structured interviews with program managers from different agencies across sectors to identify implementation issues. The study concluded that despite the availability of a mental health policy which clearly and explicitly articulates intersectoral collaboration as a priority area for action, very little exists in the current service delivery system. Services providers across sectors acknowledge the benefits of intersectoral collaboration and that there are significant barriers to intersectoral collaboration, which in turn hinders a national approach to service planning and delivery. Intersectoral collaboration is not possible if sectors themselves are dependent on a top-down health sector driven and dominated approach, or if the general atmosphere is clouded by stigmatization of mental health illnesses.