17 resultados para Cylindrical Polyelectrolyte Brushes ATRP Synthesis grafting from
Resumo:
3-O-methylmannose polysaccharides (MMPs) are cytoplasmic carbohydrates synthesized by mycobacteria, which play important intracellular roles, such as for example in metabolism regulation. An important way to confirm if the inhibition of the synthesis of these polysaccharides will critically affect the survival of mycobacteria is the study of the biosynthetic pathways from these molecules on these microorganisms. The purpose of this work is the efficient synthesis of three saccharides, which are rare cellular precursors from the biosynthesis of the mycobacterial polysaccharides, allowing its study. In order to obtain these molecules, a chemical strategy to connect two precursors was used. This process is called chemical glycosylation and its importance will be highlighted as an important alternative to enzymatic glycosylation. The first objective was the synthesis of the disaccharides Methyl (3-O-methyl-α-D-mannopyranosyl)-(1→4)-3-O-methyl-α-D-mannopyranoside and (3-O-Methyl-α-D-mannopyra- nosyl)-(1→4)-3-O-methyl-(α/β)-D-mannopyranose. The mannose precursors were prepared before the glycosylation reaction. The same mannosyl donor was used in the preparation of both molecules and its efficient synthesis was achieved using a 8 step synthetic route from D-mannose. A different mannosyl acceptor was used in the synthesis of each disaccharide and their syntheses were also efficient, the first one a 4 step synthetic route from α-methyl-D-mannose and the second one as an intermediate from the synthesis of the mannosyl donor. The stereoselective preparation of these disaccharides was performed successfully. The second and last objective of the proposed work was the synthesis of the tetrasaccharide methyl (3-O-methyl-α-D-mannopyranosyl-(1→4)-3-O-methyl-α-D-mannopyra- nosyl-(1→4)-3-O-methyl-α-D-mannopyranosyl-(1→4)-3-O-methyl-α-D-mannopyranoside. The disaccharide acceptor and donor to be linked through a stereoselective glycosidic reaction had to be first synthesized. Several synthetic strategies were studied. Neither the precursors nor the tetrasaccharide were synthesized, but a final promising synthetic route for its preparation has been proposed.
Resumo:
Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.